Muhammad Harith Noor Azam, Farida Hazwani MOHD RIDZUAN, M. N. S. Mohd Sayuti
{"title":"基于多目标进化算法的音频隐写掩护选择优化","authors":"Muhammad Harith Noor Azam, Farida Hazwani MOHD RIDZUAN, M. N. S. Mohd Sayuti","doi":"10.32890/jict2023.22.2.5","DOIUrl":null,"url":null,"abstract":"Existing embedding techniques depend on cover audio selected by users. Unknowingly, users may make a poor cover audio selectionthat is not optimised in its capacity or imperceptibility features, which could reduce the effectiveness of any embedding technique. As a trade-off exists between capacity and imperceptibility, producing a method focused on optimising both features is crucial. One ofthe search methods commonly used to find solutions for the trade-off problem in various fields is the Multi-Objective Evolutionary Algorithm (MOEA). Therefore, this research proposed a new method for optimising cover audio selection for audio steganography using the Non-dominated Sorting Genetic Algorithm-II (NSGA-II), which falls under the MOEA Pareto dominance paradigm. The proposed method provided suggestions for cover audio to users based on imperceptibility and capacity features. The sample difference calculation was initially formulated to determine the maximum capacity for each cover audio defined in the cover audio database. Next, NSGA-II was implemented to determine the optimised solutions based on the parameters provided by each chromosome. The experimental results demonstrated the effectiveness of the proposed method as it managed to dominate thesolutions from the previous method selected based on one criterion only. In addition, the proposed method considered that the trade-off managed to select the solution as the highest priority compared to the previous method, which put the same solution as low as 71 in the priority ranking. In conclusion, the method optimised the cover audio selected, thus, improving the effectiveness of the audio steganography used. It can be a response to help people whose computers and mobile devices continue to be unfamiliar with audio steganography in an age where information security is crucial. ","PeriodicalId":39396,"journal":{"name":"International Journal of Information and Communication Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized Cover Selection for Audio Steganography Using Multi-Objective Evolutionary Algorithm\",\"authors\":\"Muhammad Harith Noor Azam, Farida Hazwani MOHD RIDZUAN, M. N. S. Mohd Sayuti\",\"doi\":\"10.32890/jict2023.22.2.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing embedding techniques depend on cover audio selected by users. Unknowingly, users may make a poor cover audio selectionthat is not optimised in its capacity or imperceptibility features, which could reduce the effectiveness of any embedding technique. As a trade-off exists between capacity and imperceptibility, producing a method focused on optimising both features is crucial. One ofthe search methods commonly used to find solutions for the trade-off problem in various fields is the Multi-Objective Evolutionary Algorithm (MOEA). Therefore, this research proposed a new method for optimising cover audio selection for audio steganography using the Non-dominated Sorting Genetic Algorithm-II (NSGA-II), which falls under the MOEA Pareto dominance paradigm. The proposed method provided suggestions for cover audio to users based on imperceptibility and capacity features. The sample difference calculation was initially formulated to determine the maximum capacity for each cover audio defined in the cover audio database. Next, NSGA-II was implemented to determine the optimised solutions based on the parameters provided by each chromosome. The experimental results demonstrated the effectiveness of the proposed method as it managed to dominate thesolutions from the previous method selected based on one criterion only. In addition, the proposed method considered that the trade-off managed to select the solution as the highest priority compared to the previous method, which put the same solution as low as 71 in the priority ranking. In conclusion, the method optimised the cover audio selected, thus, improving the effectiveness of the audio steganography used. It can be a response to help people whose computers and mobile devices continue to be unfamiliar with audio steganography in an age where information security is crucial. \",\"PeriodicalId\":39396,\"journal\":{\"name\":\"International Journal of Information and Communication Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information and Communication Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32890/jict2023.22.2.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information and Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32890/jict2023.22.2.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
Optimized Cover Selection for Audio Steganography Using Multi-Objective Evolutionary Algorithm
Existing embedding techniques depend on cover audio selected by users. Unknowingly, users may make a poor cover audio selectionthat is not optimised in its capacity or imperceptibility features, which could reduce the effectiveness of any embedding technique. As a trade-off exists between capacity and imperceptibility, producing a method focused on optimising both features is crucial. One ofthe search methods commonly used to find solutions for the trade-off problem in various fields is the Multi-Objective Evolutionary Algorithm (MOEA). Therefore, this research proposed a new method for optimising cover audio selection for audio steganography using the Non-dominated Sorting Genetic Algorithm-II (NSGA-II), which falls under the MOEA Pareto dominance paradigm. The proposed method provided suggestions for cover audio to users based on imperceptibility and capacity features. The sample difference calculation was initially formulated to determine the maximum capacity for each cover audio defined in the cover audio database. Next, NSGA-II was implemented to determine the optimised solutions based on the parameters provided by each chromosome. The experimental results demonstrated the effectiveness of the proposed method as it managed to dominate thesolutions from the previous method selected based on one criterion only. In addition, the proposed method considered that the trade-off managed to select the solution as the highest priority compared to the previous method, which put the same solution as low as 71 in the priority ranking. In conclusion, the method optimised the cover audio selected, thus, improving the effectiveness of the audio steganography used. It can be a response to help people whose computers and mobile devices continue to be unfamiliar with audio steganography in an age where information security is crucial.
期刊介绍:
IJICT is a refereed journal in the field of information and communication technology (ICT), providing an international forum for professionals, engineers and researchers. IJICT reports the new paradigms in this emerging field of technology and envisions the future developments in the frontier areas. The journal addresses issues for the vertical and horizontal applications in this area. Topics covered include: -Information theory/coding- Information/IT/network security, standards, applications- Internet/web based systems/products- Data mining/warehousing- Network planning, design, administration- Sensor/ad hoc networks- Human-computer intelligent interaction, AI- Computational linguistics, digital speech- Distributed/cooperative media- Interactive communication media/content- Social interaction, mobile communications- Signal representation/processing, image processing- Virtual reality, cyber law, e-governance- Microprocessor interfacing, hardware design- Control of industrial processes, ERP/CRM/SCM