基于菌丝体的生物复合材料的基础知识

IF 0.7 4区 艺术学 0 ARCHITECTURE
A. Ghazvinian, Benay Gursoy
{"title":"基于菌丝体的生物复合材料的基础知识","authors":"A. Ghazvinian, Benay Gursoy","doi":"10.3992/1943-4618.17.1.37","DOIUrl":null,"url":null,"abstract":"\n Mycelium-based composites (MBC) are biomaterials presenting renewable and bio-degradable alternatives for a wide range of design and manufacturing processes, including the building industry. MBC result from the incomplete growth of mycelium, fibrous root systems of fungi. They can turn urban and agricultural waste into high-end products. Existing research shows that MBC can reduce fossil fuels’ reliance and embodied energy and decrease building waste. Architects recently designed and built a wide range of experimental projects with MBC. In parallel, there is a growing body of work on MBC by scholars from different disciplines, such as mycology, material science, and mechanical engineering, focusing on assessing and enhancing the material properties of MBC for various applications.\n In this paper, we first provide essential knowledge on the cultivation of MBC for architectural applications. Next, we analyze some of the prominent architectural prototypes with MBC to exemplify the architectural potentials of MBC and uncover the constraints and affordances of this biomaterial when used in an architectural context. Finally, we review and synthesize the existing literature on MBC from different disciplines providing a guide for architects to cultivate and enhance the material properties of MBC for architectural goals.","PeriodicalId":51753,"journal":{"name":"Journal of Green Building","volume":"2 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"BASICS OF BUILDING WITH MYCELIUM-BASED BIO-COMPOSITES\",\"authors\":\"A. Ghazvinian, Benay Gursoy\",\"doi\":\"10.3992/1943-4618.17.1.37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Mycelium-based composites (MBC) are biomaterials presenting renewable and bio-degradable alternatives for a wide range of design and manufacturing processes, including the building industry. MBC result from the incomplete growth of mycelium, fibrous root systems of fungi. They can turn urban and agricultural waste into high-end products. Existing research shows that MBC can reduce fossil fuels’ reliance and embodied energy and decrease building waste. Architects recently designed and built a wide range of experimental projects with MBC. In parallel, there is a growing body of work on MBC by scholars from different disciplines, such as mycology, material science, and mechanical engineering, focusing on assessing and enhancing the material properties of MBC for various applications.\\n In this paper, we first provide essential knowledge on the cultivation of MBC for architectural applications. Next, we analyze some of the prominent architectural prototypes with MBC to exemplify the architectural potentials of MBC and uncover the constraints and affordances of this biomaterial when used in an architectural context. Finally, we review and synthesize the existing literature on MBC from different disciplines providing a guide for architects to cultivate and enhance the material properties of MBC for architectural goals.\",\"PeriodicalId\":51753,\"journal\":{\"name\":\"Journal of Green Building\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Green Building\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3992/1943-4618.17.1.37\",\"RegionNum\":4,\"RegionCategory\":\"艺术学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Green Building","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3992/1943-4618.17.1.37","RegionNum":4,"RegionCategory":"艺术学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ARCHITECTURE","Score":null,"Total":0}
引用次数: 6

摘要

菌丝体基复合材料(MBC)是一种可再生和可生物降解的生物材料,适用于广泛的设计和制造过程,包括建筑行业。MBC是由真菌的纤维根系统菌丝体生长不完全引起的。它们可以将城市和农业废弃物转化为高端产品。现有研究表明,MBC可以减少对化石燃料的依赖和蕴含能源,减少建筑垃圾。建筑师最近与MBC合作设计和建造了一系列实验项目。与此同时,来自不同学科的学者,如真菌学、材料科学和机械工程,对MBC进行了越来越多的研究,重点是评估和提高MBC的材料性能,以适应各种应用。在本文中,我们首先提供了在建筑应用中培养MBC的基本知识。接下来,我们用MBC分析了一些著名的建筑原型,以举例说明MBC的建筑潜力,并揭示这种生物材料在建筑环境中使用时的限制和功能。最后,我们对不同学科关于MBC的现有文献进行了回顾和综合,为建筑师培养和提高MBC的材料性能提供指导,以达到建筑目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BASICS OF BUILDING WITH MYCELIUM-BASED BIO-COMPOSITES
Mycelium-based composites (MBC) are biomaterials presenting renewable and bio-degradable alternatives for a wide range of design and manufacturing processes, including the building industry. MBC result from the incomplete growth of mycelium, fibrous root systems of fungi. They can turn urban and agricultural waste into high-end products. Existing research shows that MBC can reduce fossil fuels’ reliance and embodied energy and decrease building waste. Architects recently designed and built a wide range of experimental projects with MBC. In parallel, there is a growing body of work on MBC by scholars from different disciplines, such as mycology, material science, and mechanical engineering, focusing on assessing and enhancing the material properties of MBC for various applications. In this paper, we first provide essential knowledge on the cultivation of MBC for architectural applications. Next, we analyze some of the prominent architectural prototypes with MBC to exemplify the architectural potentials of MBC and uncover the constraints and affordances of this biomaterial when used in an architectural context. Finally, we review and synthesize the existing literature on MBC from different disciplines providing a guide for architects to cultivate and enhance the material properties of MBC for architectural goals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
7.10%
发文量
36
期刊介绍: The purpose of the Journal of Green Building is to present the very best peer-reviewed research in green building design, construction, engineering, technological innovation, facilities management, building information modeling, and community and urban planning. The Research section of the Journal of Green Building publishes peer-reviewed articles in the fields of engineering, architecture, construction, construction management, building science, facilities management, landscape architecture, interior design, urban and community planning, and all disciplines related to the built environment. In addition, the Journal of Green Building offers the following sections: Industry Corner that offers applied articles of successfully completed sustainable buildings and landscapes; New Directions in Teaching and Research that offers guidance from teachers and researchers on incorporating innovative sustainable learning into the curriculum or the likely directions of future research; and Campus Sustainability that offers articles from programs dedicated to greening the university campus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信