由拉普拉斯算子驱动的非各向同性两相极小化问题的极限情况

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
J. V. Silva, J. Rossi
{"title":"由拉普拉斯算子驱动的非各向同性两相极小化问题的极限情况","authors":"J. V. Silva, J. Rossi","doi":"10.4171/IFB/406","DOIUrl":null,"url":null,"abstract":"In this work we study a minimization problem with two-phases where in each phase region the problem is ruled by a quasi-linear elliptic operator of p−Laplacian type. The problem in its variational form is as follows: min v  ∫ Ω∩{v>0} ( 1 p |∇v|p +λ p +(x)+ f+(x)v ) dx+ ∫ Ω∩{v≤0} ( 1 q |∇v|q +λ q −(x)+ f−(x)v ) dx  . Here we minimize among all admissible functions v in an appropriate Sobolev space with a prescribed boundary datum v = g on ∂Ω. First, we show existence of a minimizer, prove some properties, and provide an example for non-uniqueness. Moreover, we analyze the limit case where p and q go to infinity, obtaining a limiting free boundary problem governed by the ∞−Laplacian operator. Consequently, Lipschitz regularity for any limiting solution is obtained. Finally, we establish some weak geometric properties for solutions.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A limit case in non-isotropic two-phase minimization problems driven by $p$-Laplacians\",\"authors\":\"J. V. Silva, J. Rossi\",\"doi\":\"10.4171/IFB/406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we study a minimization problem with two-phases where in each phase region the problem is ruled by a quasi-linear elliptic operator of p−Laplacian type. The problem in its variational form is as follows: min v  ∫ Ω∩{v>0} ( 1 p |∇v|p +λ p +(x)+ f+(x)v ) dx+ ∫ Ω∩{v≤0} ( 1 q |∇v|q +λ q −(x)+ f−(x)v ) dx  . Here we minimize among all admissible functions v in an appropriate Sobolev space with a prescribed boundary datum v = g on ∂Ω. First, we show existence of a minimizer, prove some properties, and provide an example for non-uniqueness. Moreover, we analyze the limit case where p and q go to infinity, obtaining a limiting free boundary problem governed by the ∞−Laplacian operator. Consequently, Lipschitz regularity for any limiting solution is obtained. Finally, we establish some weak geometric properties for solutions.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2018-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/IFB/406\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/IFB/406","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

本文研究了一个两相的最小化问题,其中在每个相域中,问题由一个p -拉普拉斯型的拟线性椭圆算子来控制。问题的变分形式如下:min v∫Ω∩v >{0}(1页| |∇v p +λp + f (x) + + (x) v) dx +∫Ω∩{v≤0}(1 q |∇v | q +λq−−(x) + f (x) v) dx。在这里,我们在一个适当的Sobolev空间中最小化所有可容许的函数v,在∂Ω上有一个规定的边界基准v = g。首先,我们证明了最小化器的存在性,证明了一些性质,并给出了一个非唯一性的例子。此外,我们分析了p和q趋于无穷时的极限情况,得到了一个由∞-拉普拉斯算子支配的极限自由边界问题。得到了任意极限解的Lipschitz正则性。最后,我们建立了解的一些弱几何性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A limit case in non-isotropic two-phase minimization problems driven by $p$-Laplacians
In this work we study a minimization problem with two-phases where in each phase region the problem is ruled by a quasi-linear elliptic operator of p−Laplacian type. The problem in its variational form is as follows: min v  ∫ Ω∩{v>0} ( 1 p |∇v|p +λ p +(x)+ f+(x)v ) dx+ ∫ Ω∩{v≤0} ( 1 q |∇v|q +λ q −(x)+ f−(x)v ) dx  . Here we minimize among all admissible functions v in an appropriate Sobolev space with a prescribed boundary datum v = g on ∂Ω. First, we show existence of a minimizer, prove some properties, and provide an example for non-uniqueness. Moreover, we analyze the limit case where p and q go to infinity, obtaining a limiting free boundary problem governed by the ∞−Laplacian operator. Consequently, Lipschitz regularity for any limiting solution is obtained. Finally, we establish some weak geometric properties for solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信