{"title":"基于DGOA算法的无刷直流电动机转矩脉动因子降低及FOPID运动控制","authors":"P. M, Arockia Edwin Xavier S","doi":"10.1177/14613484231181449","DOIUrl":null,"url":null,"abstract":"The Brushless Direct Current (BLDC) motor has many benefits due to characteristics like its small size and precise speed regulation. Uncertainty problems are presented by the system’s slow Proportional-Integral (PI) controller response time as well as some BLDC motor operating circumstances. The proposed Fractional-Order Proportional-Integral-Derivative (FOPID) controller and Difference of Orientation Offset Gaussian (DOOG) Grasshopper Optimization Algorithm (GOA) (DGOA) function are used to mitigate torque ripples in BLDC motors and overcome these drawbacks. An adaptive parameter has been introduced to enhance the performance of the conventional GOA method, and the performance of the suggested DGOA is compared to the benchmark functions. The simulation of the driver with the suggested DGOA-FOPID results in an improvement in Torque Ripple Reduction and speed control is obtained that better torque ripple reduction and speed regulation have been achieved.","PeriodicalId":56067,"journal":{"name":"Journal of Low Frequency Noise Vibration and Active Control","volume":"26 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BLDC motor torque ripple factor lowering and FOPID based motion control using DGOA algorithm\",\"authors\":\"P. M, Arockia Edwin Xavier S\",\"doi\":\"10.1177/14613484231181449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Brushless Direct Current (BLDC) motor has many benefits due to characteristics like its small size and precise speed regulation. Uncertainty problems are presented by the system’s slow Proportional-Integral (PI) controller response time as well as some BLDC motor operating circumstances. The proposed Fractional-Order Proportional-Integral-Derivative (FOPID) controller and Difference of Orientation Offset Gaussian (DOOG) Grasshopper Optimization Algorithm (GOA) (DGOA) function are used to mitigate torque ripples in BLDC motors and overcome these drawbacks. An adaptive parameter has been introduced to enhance the performance of the conventional GOA method, and the performance of the suggested DGOA is compared to the benchmark functions. The simulation of the driver with the suggested DGOA-FOPID results in an improvement in Torque Ripple Reduction and speed control is obtained that better torque ripple reduction and speed regulation have been achieved.\",\"PeriodicalId\":56067,\"journal\":{\"name\":\"Journal of Low Frequency Noise Vibration and Active Control\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Low Frequency Noise Vibration and Active Control\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/14613484231181449\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Frequency Noise Vibration and Active Control","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14613484231181449","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
BLDC motor torque ripple factor lowering and FOPID based motion control using DGOA algorithm
The Brushless Direct Current (BLDC) motor has many benefits due to characteristics like its small size and precise speed regulation. Uncertainty problems are presented by the system’s slow Proportional-Integral (PI) controller response time as well as some BLDC motor operating circumstances. The proposed Fractional-Order Proportional-Integral-Derivative (FOPID) controller and Difference of Orientation Offset Gaussian (DOOG) Grasshopper Optimization Algorithm (GOA) (DGOA) function are used to mitigate torque ripples in BLDC motors and overcome these drawbacks. An adaptive parameter has been introduced to enhance the performance of the conventional GOA method, and the performance of the suggested DGOA is compared to the benchmark functions. The simulation of the driver with the suggested DGOA-FOPID results in an improvement in Torque Ripple Reduction and speed control is obtained that better torque ripple reduction and speed regulation have been achieved.
期刊介绍:
Journal of Low Frequency Noise, Vibration & Active Control is a peer-reviewed, open access journal, bringing together material which otherwise would be scattered. The journal is the cornerstone of the creation of a unified corpus of knowledge on the subject.