L. Théodon, T. Eremina, Kassem Dia, F. Lamadie, J. Pinoli, J. Debayle
{"title":"基于局部测度的多相流图像随机几何模型参数估计","authors":"L. Théodon, T. Eremina, Kassem Dia, F. Lamadie, J. Pinoli, J. Debayle","doi":"10.5566/ias.2638","DOIUrl":null,"url":null,"abstract":"This paper presents a new method for estimating the parameters of a stochastic geometric model for multiphase flow image processing using local measures. Local measures differ from global measures in that they are only based on a small part of a binary image and consequently provide different information of certain properties such as area and perimeter. Since local measures have been shown to be helpful in estimating the typical grain elongation ratio of a homogeneous Boolean model, the objective of this study was to use these local measures to statistically infer the parameters of a more complex non-Boolean model from a sample of observations. An optimization algorithm is used to minimize a cost function based on the likelihood of a probability densityof local measurements. The performance of the model is analysed using numerical experiments and real observations. The errors relative to real images of most of the properties of the model-generated images are less than 2%. The covariance and particle size distribution are also calculated and compared.","PeriodicalId":49062,"journal":{"name":"Image Analysis & Stereology","volume":"25 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Estimating the Parameters of a Stochastic Geometrical Model for Multiphase Flow Images Using Local Measures\",\"authors\":\"L. Théodon, T. Eremina, Kassem Dia, F. Lamadie, J. Pinoli, J. Debayle\",\"doi\":\"10.5566/ias.2638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new method for estimating the parameters of a stochastic geometric model for multiphase flow image processing using local measures. Local measures differ from global measures in that they are only based on a small part of a binary image and consequently provide different information of certain properties such as area and perimeter. Since local measures have been shown to be helpful in estimating the typical grain elongation ratio of a homogeneous Boolean model, the objective of this study was to use these local measures to statistically infer the parameters of a more complex non-Boolean model from a sample of observations. An optimization algorithm is used to minimize a cost function based on the likelihood of a probability densityof local measurements. The performance of the model is analysed using numerical experiments and real observations. The errors relative to real images of most of the properties of the model-generated images are less than 2%. The covariance and particle size distribution are also calculated and compared.\",\"PeriodicalId\":49062,\"journal\":{\"name\":\"Image Analysis & Stereology\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Image Analysis & Stereology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.5566/ias.2638\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image Analysis & Stereology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.5566/ias.2638","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
Estimating the Parameters of a Stochastic Geometrical Model for Multiphase Flow Images Using Local Measures
This paper presents a new method for estimating the parameters of a stochastic geometric model for multiphase flow image processing using local measures. Local measures differ from global measures in that they are only based on a small part of a binary image and consequently provide different information of certain properties such as area and perimeter. Since local measures have been shown to be helpful in estimating the typical grain elongation ratio of a homogeneous Boolean model, the objective of this study was to use these local measures to statistically infer the parameters of a more complex non-Boolean model from a sample of observations. An optimization algorithm is used to minimize a cost function based on the likelihood of a probability densityof local measurements. The performance of the model is analysed using numerical experiments and real observations. The errors relative to real images of most of the properties of the model-generated images are less than 2%. The covariance and particle size distribution are also calculated and compared.
期刊介绍:
Image Analysis and Stereology is the official journal of the International Society for Stereology & Image Analysis. It promotes the exchange of scientific, technical, organizational and other information on the quantitative analysis of data having a geometrical structure, including stereology, differential geometry, image analysis, image processing, mathematical morphology, stochastic geometry, statistics, pattern recognition, and related topics. The fields of application are not restricted and range from biomedicine, materials sciences and physics to geology and geography.