关于Kostant配分函数的$q$-模拟的渐近性

IF 0.4 Q4 MATHEMATICS, APPLIED
P. Harris, Margaret Rahmoeller, Lisa Schneider
{"title":"关于Kostant配分函数的$q$-模拟的渐近性","authors":"P. Harris, Margaret Rahmoeller, Lisa Schneider","doi":"10.4310/joc.2022.v13.n2.a1","DOIUrl":null,"url":null,"abstract":"Kostant's partition function counts the number of distinct ways to express a weight of a classical Lie algebra $\\mathfrak{g}$ as a sum of positive roots of $\\mathfrak{g}$. We refer to each of these expressions as decompositions of a weight and our main result establishes that the (normalized) distribution of the number of positive roots in the decomposition of the highest root of a classical Lie algebra of rank $r$ converges to a Gaussian distribution as $r\\to\\infty$. We extend these results to an infinite family of weights, irrespective of Lie type, for which we establish a closed formula for the $q$-analog of Kostant's partition function and then prove that the analogous distribution also converges to a Gaussian distribution as the rank of the Lie algebra goes to infinity. We end our analysis with some directions for future research.","PeriodicalId":44683,"journal":{"name":"Journal of Combinatorics","volume":"29 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2019-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the asymptotic behavior of the $q$-analog of Kostant's partition function\",\"authors\":\"P. Harris, Margaret Rahmoeller, Lisa Schneider\",\"doi\":\"10.4310/joc.2022.v13.n2.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kostant's partition function counts the number of distinct ways to express a weight of a classical Lie algebra $\\\\mathfrak{g}$ as a sum of positive roots of $\\\\mathfrak{g}$. We refer to each of these expressions as decompositions of a weight and our main result establishes that the (normalized) distribution of the number of positive roots in the decomposition of the highest root of a classical Lie algebra of rank $r$ converges to a Gaussian distribution as $r\\\\to\\\\infty$. We extend these results to an infinite family of weights, irrespective of Lie type, for which we establish a closed formula for the $q$-analog of Kostant's partition function and then prove that the analogous distribution also converges to a Gaussian distribution as the rank of the Lie algebra goes to infinity. We end our analysis with some directions for future research.\",\"PeriodicalId\":44683,\"journal\":{\"name\":\"Journal of Combinatorics\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2019-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/joc.2022.v13.n2.a1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/joc.2022.v13.n2.a1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

Kostant的配分函数计算了将经典李代数$\mathfrak{g}$的权值表示为$\mathfrak{g}$的正根和的不同方法的个数。我们将这些表达式中的每一个称为权重的分解,我们的主要结果建立了在秩$r$的经典李代数的最高根的分解中正根数的(归一化)分布收敛于一个高斯分布$r\to\infty$。我们将这些结果推广到一个无限的权族,而不考虑李氏类型,为此我们建立了Kostant配分函数的$q$ -模拟的封闭公式,然后证明了当李氏代数的秩趋于无穷时,模拟分布也收敛于高斯分布。最后,对今后的研究方向进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the asymptotic behavior of the $q$-analog of Kostant's partition function
Kostant's partition function counts the number of distinct ways to express a weight of a classical Lie algebra $\mathfrak{g}$ as a sum of positive roots of $\mathfrak{g}$. We refer to each of these expressions as decompositions of a weight and our main result establishes that the (normalized) distribution of the number of positive roots in the decomposition of the highest root of a classical Lie algebra of rank $r$ converges to a Gaussian distribution as $r\to\infty$. We extend these results to an infinite family of weights, irrespective of Lie type, for which we establish a closed formula for the $q$-analog of Kostant's partition function and then prove that the analogous distribution also converges to a Gaussian distribution as the rank of the Lie algebra goes to infinity. We end our analysis with some directions for future research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Combinatorics
Journal of Combinatorics MATHEMATICS, APPLIED-
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信