一种轮式悬臂式非固定励磁压电旋转能量采集器的研制与性能评价

IF 2.4 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
J. Kan, Li Zhang, Shuyun Wang, Xinyue Kan, Yiqun Gu, Zemeng Yang, Zhonghua Zhang
{"title":"一种轮式悬臂式非固定励磁压电旋转能量采集器的研制与性能评价","authors":"J. Kan, Li Zhang, Shuyun Wang, Xinyue Kan, Yiqun Gu, Zemeng Yang, Zhonghua Zhang","doi":"10.1177/1045389x231177806","DOIUrl":null,"url":null,"abstract":"A wheel-type cantilevered piezoelectric rotational energy harvester (wheel-type PREH) via an unfixed exciting magnet was presented to harvest energy from rotational motion without or far away from a fixed support. To verify the structural feasibility and figure out the effect of rolling exciting magnet and excited magnet on the dynamic characteristics and power generation performance of the wheel-type PREH, the theoretical analysis, simulation, fabrication and experimental testing were performed. The results showed that the performance of the wheel-type PREH depended on the rotary speeds, proof mass and piezo-cantilever mass, number of exciting magnets, cylindrical sleeve materials and so on. When other parameters were constant, there were multiple optimal rotary speeds for the maximal amplitude-ratio, output voltage, electrical energy and output power to achieve peak. Besides, the total number of voltage crests per second did not change with rotary speed. There was a constant optimal resistance load for the wheel-type PREH at different rotary speeds to achieve maximal power. The PREH prototype could yield a maximum output power of 0.74 mW at 767 r/min with optimal load resistance of 215 kΩ and 40 different color LEDs in parallel and a low power light strip could be lighted by wheel-type PREH.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"3 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and performance evaluation of a wheel-type cantilevered piezoelectric rotational energy harvester via an unfixed exciting magnet\",\"authors\":\"J. Kan, Li Zhang, Shuyun Wang, Xinyue Kan, Yiqun Gu, Zemeng Yang, Zhonghua Zhang\",\"doi\":\"10.1177/1045389x231177806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A wheel-type cantilevered piezoelectric rotational energy harvester (wheel-type PREH) via an unfixed exciting magnet was presented to harvest energy from rotational motion without or far away from a fixed support. To verify the structural feasibility and figure out the effect of rolling exciting magnet and excited magnet on the dynamic characteristics and power generation performance of the wheel-type PREH, the theoretical analysis, simulation, fabrication and experimental testing were performed. The results showed that the performance of the wheel-type PREH depended on the rotary speeds, proof mass and piezo-cantilever mass, number of exciting magnets, cylindrical sleeve materials and so on. When other parameters were constant, there were multiple optimal rotary speeds for the maximal amplitude-ratio, output voltage, electrical energy and output power to achieve peak. Besides, the total number of voltage crests per second did not change with rotary speed. There was a constant optimal resistance load for the wheel-type PREH at different rotary speeds to achieve maximal power. The PREH prototype could yield a maximum output power of 0.74 mW at 767 r/min with optimal load resistance of 215 kΩ and 40 different color LEDs in parallel and a low power light strip could be lighted by wheel-type PREH.\",\"PeriodicalId\":16121,\"journal\":{\"name\":\"Journal of Intelligent Material Systems and Structures\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Material Systems and Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/1045389x231177806\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Material Systems and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/1045389x231177806","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于非固定激励磁体的轮式悬臂式压电旋转能量采集器(wheel-type PREH),用于在无固定支撑或远离固定支撑的情况下从旋转运动中获取能量。为验证结构的可行性,研究滚动励磁和励磁对轮式PREH动力特性和发电性能的影响,进行了理论分析、仿真、制造和实验测试。结果表明,轮式PREH的性能与转速、验证质量、压电悬臂质量、激励磁体数量、圆柱套材料等因素有关。在其他参数一定的情况下,最大幅值比、输出电压、电能和输出功率均有多个最优转速达到峰值。此外,每秒电压峰值总数不随转速的变化而变化。在不同转速下,轮式PREH具有恒定的最优阻力负荷以获得最大功率。PREH原型可以在767 r/min的速度下产生0.74 mW的最大输出功率,最佳负载电阻为215 kΩ, 40个不同颜色的led并联,并可以通过轮式PREH点亮低功率灯条。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development and performance evaluation of a wheel-type cantilevered piezoelectric rotational energy harvester via an unfixed exciting magnet
A wheel-type cantilevered piezoelectric rotational energy harvester (wheel-type PREH) via an unfixed exciting magnet was presented to harvest energy from rotational motion without or far away from a fixed support. To verify the structural feasibility and figure out the effect of rolling exciting magnet and excited magnet on the dynamic characteristics and power generation performance of the wheel-type PREH, the theoretical analysis, simulation, fabrication and experimental testing were performed. The results showed that the performance of the wheel-type PREH depended on the rotary speeds, proof mass and piezo-cantilever mass, number of exciting magnets, cylindrical sleeve materials and so on. When other parameters were constant, there were multiple optimal rotary speeds for the maximal amplitude-ratio, output voltage, electrical energy and output power to achieve peak. Besides, the total number of voltage crests per second did not change with rotary speed. There was a constant optimal resistance load for the wheel-type PREH at different rotary speeds to achieve maximal power. The PREH prototype could yield a maximum output power of 0.74 mW at 767 r/min with optimal load resistance of 215 kΩ and 40 different color LEDs in parallel and a low power light strip could be lighted by wheel-type PREH.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Intelligent Material Systems and Structures
Journal of Intelligent Material Systems and Structures 工程技术-材料科学:综合
CiteScore
5.40
自引率
11.10%
发文量
126
审稿时长
4.7 months
期刊介绍: The Journal of Intelligent Materials Systems and Structures is an international peer-reviewed journal that publishes the highest quality original research reporting the results of experimental or theoretical work on any aspect of intelligent materials systems and/or structures research also called smart structure, smart materials, active materials, adaptive structures and adaptive materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信