损失函数信息不完全时的短缺风险模型

Oper. Res. Pub Date : 2022-01-06 DOI:10.1287/opre.2021.2212
E. Delage, Shaoyan Guo, Huifu Xu
{"title":"损失函数信息不完全时的短缺风险模型","authors":"E. Delage, Shaoyan Guo, Huifu Xu","doi":"10.1287/opre.2021.2212","DOIUrl":null,"url":null,"abstract":"Utility-based shortfall risk measures effectively captures a decision maker's risk attitude on tail losses. In this paper, we consider a situation where the decision maker's risk attitude toward tail losses is ambiguous and introduce a robust version of shortfall risk, which mitigates the risk arising from such ambiguity. Specifically, we use some available partial information or subjective judgement to construct a set of plausible utility-based shortfall risk measures and define a so-called preference robust shortfall risk as through the worst risk that can be measured in this (ambiguity) set. We then apply the robust shortfall risk paradigm to optimal decision-making problems and demonstrate how the latter can be reformulated as tractable convex programs when the underlying exogenous uncertainty is discretely distributed.","PeriodicalId":19546,"journal":{"name":"Oper. Res.","volume":"26 1","pages":"3511-3518"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Shortfall Risk Models When Information on Loss Function Is Incomplete\",\"authors\":\"E. Delage, Shaoyan Guo, Huifu Xu\",\"doi\":\"10.1287/opre.2021.2212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Utility-based shortfall risk measures effectively captures a decision maker's risk attitude on tail losses. In this paper, we consider a situation where the decision maker's risk attitude toward tail losses is ambiguous and introduce a robust version of shortfall risk, which mitigates the risk arising from such ambiguity. Specifically, we use some available partial information or subjective judgement to construct a set of plausible utility-based shortfall risk measures and define a so-called preference robust shortfall risk as through the worst risk that can be measured in this (ambiguity) set. We then apply the robust shortfall risk paradigm to optimal decision-making problems and demonstrate how the latter can be reformulated as tractable convex programs when the underlying exogenous uncertainty is discretely distributed.\",\"PeriodicalId\":19546,\"journal\":{\"name\":\"Oper. Res.\",\"volume\":\"26 1\",\"pages\":\"3511-3518\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oper. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1287/opre.2021.2212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/opre.2021.2212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

基于公用事业的短缺风险度量有效地捕捉了决策者对尾部损失的风险态度。在本文中,我们考虑了决策者对尾部损失的风险态度是模糊的情况,并引入了一个鲁棒版本的缺口风险,以减轻这种模糊性带来的风险。具体而言,我们使用一些可用的部分信息或主观判断来构建一组可信的基于效用的短缺风险度量,并定义所谓的偏好稳健短缺风险,即通过该(模糊)集合中可以测量的最坏风险。然后,我们将鲁棒不足风险范式应用于最优决策问题,并演示了当潜在的外生不确定性离散分布时,后者如何被重新表述为可处理的凸规划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shortfall Risk Models When Information on Loss Function Is Incomplete
Utility-based shortfall risk measures effectively captures a decision maker's risk attitude on tail losses. In this paper, we consider a situation where the decision maker's risk attitude toward tail losses is ambiguous and introduce a robust version of shortfall risk, which mitigates the risk arising from such ambiguity. Specifically, we use some available partial information or subjective judgement to construct a set of plausible utility-based shortfall risk measures and define a so-called preference robust shortfall risk as through the worst risk that can be measured in this (ambiguity) set. We then apply the robust shortfall risk paradigm to optimal decision-making problems and demonstrate how the latter can be reformulated as tractable convex programs when the underlying exogenous uncertainty is discretely distributed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信