{"title":"损失函数信息不完全时的短缺风险模型","authors":"E. Delage, Shaoyan Guo, Huifu Xu","doi":"10.1287/opre.2021.2212","DOIUrl":null,"url":null,"abstract":"Utility-based shortfall risk measures effectively captures a decision maker's risk attitude on tail losses. In this paper, we consider a situation where the decision maker's risk attitude toward tail losses is ambiguous and introduce a robust version of shortfall risk, which mitigates the risk arising from such ambiguity. Specifically, we use some available partial information or subjective judgement to construct a set of plausible utility-based shortfall risk measures and define a so-called preference robust shortfall risk as through the worst risk that can be measured in this (ambiguity) set. We then apply the robust shortfall risk paradigm to optimal decision-making problems and demonstrate how the latter can be reformulated as tractable convex programs when the underlying exogenous uncertainty is discretely distributed.","PeriodicalId":19546,"journal":{"name":"Oper. Res.","volume":"26 1","pages":"3511-3518"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Shortfall Risk Models When Information on Loss Function Is Incomplete\",\"authors\":\"E. Delage, Shaoyan Guo, Huifu Xu\",\"doi\":\"10.1287/opre.2021.2212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Utility-based shortfall risk measures effectively captures a decision maker's risk attitude on tail losses. In this paper, we consider a situation where the decision maker's risk attitude toward tail losses is ambiguous and introduce a robust version of shortfall risk, which mitigates the risk arising from such ambiguity. Specifically, we use some available partial information or subjective judgement to construct a set of plausible utility-based shortfall risk measures and define a so-called preference robust shortfall risk as through the worst risk that can be measured in this (ambiguity) set. We then apply the robust shortfall risk paradigm to optimal decision-making problems and demonstrate how the latter can be reformulated as tractable convex programs when the underlying exogenous uncertainty is discretely distributed.\",\"PeriodicalId\":19546,\"journal\":{\"name\":\"Oper. Res.\",\"volume\":\"26 1\",\"pages\":\"3511-3518\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oper. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1287/opre.2021.2212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/opre.2021.2212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Shortfall Risk Models When Information on Loss Function Is Incomplete
Utility-based shortfall risk measures effectively captures a decision maker's risk attitude on tail losses. In this paper, we consider a situation where the decision maker's risk attitude toward tail losses is ambiguous and introduce a robust version of shortfall risk, which mitigates the risk arising from such ambiguity. Specifically, we use some available partial information or subjective judgement to construct a set of plausible utility-based shortfall risk measures and define a so-called preference robust shortfall risk as through the worst risk that can be measured in this (ambiguity) set. We then apply the robust shortfall risk paradigm to optimal decision-making problems and demonstrate how the latter can be reformulated as tractable convex programs when the underlying exogenous uncertainty is discretely distributed.