{"title":"关于允许τ-拟里奇调和度量的弯曲积流形","authors":"S. Günsen, L. Onat","doi":"10.22190/fumi211212023g","DOIUrl":null,"url":null,"abstract":"In this paper, we study warped product manifolds admitting $\\tau$-quasi Ricci-harmonic(RH) metrics. We prove that the metric of the fibre is harmonic Einstein when warped product metric is $\\tau$-quasi RH metric. We also provide some conditions for $M$ to be a harmonic Einstein manifold. Finally, we provide necessary and sufficient conditions for a metric $g$ to be $\\tau$-quasi RH metric by using a differential equation system.","PeriodicalId":54148,"journal":{"name":"Facta Universitatis-Series Mathematics and Informatics","volume":"49 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON WARPED PRODUCT MANIFOLDS ADMITTING τ-QUASI RICCI-HARMONIC METRICS\",\"authors\":\"S. Günsen, L. Onat\",\"doi\":\"10.22190/fumi211212023g\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study warped product manifolds admitting $\\\\tau$-quasi Ricci-harmonic(RH) metrics. We prove that the metric of the fibre is harmonic Einstein when warped product metric is $\\\\tau$-quasi RH metric. We also provide some conditions for $M$ to be a harmonic Einstein manifold. Finally, we provide necessary and sufficient conditions for a metric $g$ to be $\\\\tau$-quasi RH metric by using a differential equation system.\",\"PeriodicalId\":54148,\"journal\":{\"name\":\"Facta Universitatis-Series Mathematics and Informatics\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Facta Universitatis-Series Mathematics and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22190/fumi211212023g\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Facta Universitatis-Series Mathematics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22190/fumi211212023g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
ON WARPED PRODUCT MANIFOLDS ADMITTING τ-QUASI RICCI-HARMONIC METRICS
In this paper, we study warped product manifolds admitting $\tau$-quasi Ricci-harmonic(RH) metrics. We prove that the metric of the fibre is harmonic Einstein when warped product metric is $\tau$-quasi RH metric. We also provide some conditions for $M$ to be a harmonic Einstein manifold. Finally, we provide necessary and sufficient conditions for a metric $g$ to be $\tau$-quasi RH metric by using a differential equation system.