微生物源跟踪中激光前向散射图像分类的深度卷积神经网络

Bin Chen
{"title":"微生物源跟踪中激光前向散射图像分类的深度卷积神经网络","authors":"Bin Chen","doi":"10.1504/IJCBDD.2019.10022511","DOIUrl":null,"url":null,"abstract":"The colony-based laser scatter imaging for microbial source tracking heavily relies on the power of optical scattering image classification. While carefully handcraft feature extraction achieved excellent results for the colonies with certain sizes for optimal classification results, the classification accuracy drops quickly for smaller or larger colonies outside of the colony size range. In this study, a deep convolutional neural network was implemented for laser scattering image feature extraction and classification. The results show that the deep learning classification method clearly outperforms the traditional clustering methods with high accuracy and consistency for host species with a wide range of colony sizes. It also provides comparable accuracy for the colonies with the optimal sizes.","PeriodicalId":13612,"journal":{"name":"Int. J. Comput. Biol. Drug Des.","volume":"10 1","pages":"261-267"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep convolutional neural network for laser forward scattering image classification in microbial source tracking\",\"authors\":\"Bin Chen\",\"doi\":\"10.1504/IJCBDD.2019.10022511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The colony-based laser scatter imaging for microbial source tracking heavily relies on the power of optical scattering image classification. While carefully handcraft feature extraction achieved excellent results for the colonies with certain sizes for optimal classification results, the classification accuracy drops quickly for smaller or larger colonies outside of the colony size range. In this study, a deep convolutional neural network was implemented for laser scattering image feature extraction and classification. The results show that the deep learning classification method clearly outperforms the traditional clustering methods with high accuracy and consistency for host species with a wide range of colony sizes. It also provides comparable accuracy for the colonies with the optimal sizes.\",\"PeriodicalId\":13612,\"journal\":{\"name\":\"Int. J. Comput. Biol. Drug Des.\",\"volume\":\"10 1\",\"pages\":\"261-267\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Biol. Drug Des.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJCBDD.2019.10022511\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Biol. Drug Des.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCBDD.2019.10022511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于菌落的激光散射成像微生物源跟踪在很大程度上依赖于光散射图像分类的能力。经过精心的手工特征提取,对于一定大小的菌落,可以获得很好的分类效果,但对于超出菌落大小范围的较大或较小的菌落,分类精度会迅速下降。本研究采用深度卷积神经网络对激光散射图像进行特征提取和分类。结果表明,深度学习分类方法在大范围菌落大小的宿主物种中具有较高的准确率和一致性,明显优于传统的聚类方法。它还为具有最佳大小的菌落提供了相当的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep convolutional neural network for laser forward scattering image classification in microbial source tracking
The colony-based laser scatter imaging for microbial source tracking heavily relies on the power of optical scattering image classification. While carefully handcraft feature extraction achieved excellent results for the colonies with certain sizes for optimal classification results, the classification accuracy drops quickly for smaller or larger colonies outside of the colony size range. In this study, a deep convolutional neural network was implemented for laser scattering image feature extraction and classification. The results show that the deep learning classification method clearly outperforms the traditional clustering methods with high accuracy and consistency for host species with a wide range of colony sizes. It also provides comparable accuracy for the colonies with the optimal sizes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信