基于多元统计建模方法的螺旋桨空化尾流特性研究

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Kun Zhou, Zhi-Feng Zhu, Bing Wang, Fang Zhou
{"title":"基于多元统计建模方法的螺旋桨空化尾流特性研究","authors":"Kun Zhou, Zhi-Feng Zhu, Bing Wang, Fang Zhou","doi":"10.1177/14750902231164789","DOIUrl":null,"url":null,"abstract":"The radiation noise generated by cavitation has been extensively studied for underwater target recognition, but there are few reports on the related mechanism of the cavitation noise of ship propellers that attract attention in the field of hydroacoustics. In this paper, the RANS equations of the underwater propeller wake field are constructed, and numerically solved by combining the cavitation model and the turbulence model. The power spectrum is used to analyze the signal of the numerical calculation results of the propeller wake pressure. The feature estimation and extraction are carried out to obtain the characteristic values of the specific characteristic parameters. These eigenvalues not only reflect the flow field characteristics but also the geometric parameters and working conditions of the propeller. Therefore, two models are established around the relationship between them. Firstly, these eigenvalues are used for regression analysis in multivariate statistics to obtain a statistical model reflecting the characteristics of propeller cavitation wake. Secondly, the relationship between the propeller skew angle and the low frequency linear spectrum amplitude is obtained by using the power spectrum diagram. In this paper, the processing results of the experimental data of the cavitation water tunnel with controllable parameters and the radiation noise data of the actual target are used to verify and supplement each other with the processing results of the feature model.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on propeller cavitation wake characteristics based on multivariate statistical modeling method\",\"authors\":\"Kun Zhou, Zhi-Feng Zhu, Bing Wang, Fang Zhou\",\"doi\":\"10.1177/14750902231164789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The radiation noise generated by cavitation has been extensively studied for underwater target recognition, but there are few reports on the related mechanism of the cavitation noise of ship propellers that attract attention in the field of hydroacoustics. In this paper, the RANS equations of the underwater propeller wake field are constructed, and numerically solved by combining the cavitation model and the turbulence model. The power spectrum is used to analyze the signal of the numerical calculation results of the propeller wake pressure. The feature estimation and extraction are carried out to obtain the characteristic values of the specific characteristic parameters. These eigenvalues not only reflect the flow field characteristics but also the geometric parameters and working conditions of the propeller. Therefore, two models are established around the relationship between them. Firstly, these eigenvalues are used for regression analysis in multivariate statistics to obtain a statistical model reflecting the characteristics of propeller cavitation wake. Secondly, the relationship between the propeller skew angle and the low frequency linear spectrum amplitude is obtained by using the power spectrum diagram. In this paper, the processing results of the experimental data of the cavitation water tunnel with controllable parameters and the radiation noise data of the actual target are used to verify and supplement each other with the processing results of the feature model.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/14750902231164789\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14750902231164789","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

空化产生的辐射噪声在水下目标识别中已经得到了广泛的研究,但在水声领域引起关注的船舶螺旋桨空化噪声的相关机理报道很少。本文建立了水下螺旋桨尾流场的RANS方程,并结合空化模型和湍流模型对其进行了数值求解。利用功率谱对螺旋桨尾流压力数值计算结果的信号进行分析。进行特征估计和提取,得到具体特征参数的特征值。这些特征值不仅反映了流场特性,而且反映了螺旋桨的几何参数和工作状态。因此,围绕它们之间的关系建立了两个模型。首先,利用这些特征值进行多元统计回归分析,得到反映螺旋桨空泡尾流特性的统计模型。其次,利用功率谱图得到螺旋桨斜倾角与低频线性谱幅值的关系;本文利用参数可控的空化水洞实验数据的处理结果和实际目标的辐射噪声数据,与特征模型的处理结果进行验证和补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on propeller cavitation wake characteristics based on multivariate statistical modeling method
The radiation noise generated by cavitation has been extensively studied for underwater target recognition, but there are few reports on the related mechanism of the cavitation noise of ship propellers that attract attention in the field of hydroacoustics. In this paper, the RANS equations of the underwater propeller wake field are constructed, and numerically solved by combining the cavitation model and the turbulence model. The power spectrum is used to analyze the signal of the numerical calculation results of the propeller wake pressure. The feature estimation and extraction are carried out to obtain the characteristic values of the specific characteristic parameters. These eigenvalues not only reflect the flow field characteristics but also the geometric parameters and working conditions of the propeller. Therefore, two models are established around the relationship between them. Firstly, these eigenvalues are used for regression analysis in multivariate statistics to obtain a statistical model reflecting the characteristics of propeller cavitation wake. Secondly, the relationship between the propeller skew angle and the low frequency linear spectrum amplitude is obtained by using the power spectrum diagram. In this paper, the processing results of the experimental data of the cavitation water tunnel with controllable parameters and the radiation noise data of the actual target are used to verify and supplement each other with the processing results of the feature model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信