(D4)-阿贝尔范畴中的对象

Pub Date : 2022-04-30 DOI:10.1142/s1005386722000190
Berke Kalebog̃az, D. Keskin Tütüncü
{"title":"(D4)-阿贝尔范畴中的对象","authors":"Berke Kalebog̃az, D. Keskin Tütüncü","doi":"10.1142/s1005386722000190","DOIUrl":null,"url":null,"abstract":"Let 𝒜 be an abelian category and [Formula: see text]. Then M is called a [Formula: see text]-object if, whenever A and B are subobjects of M with [Formula: see text] and [Formula: see text] is an epimorphism, [Formula: see text] is a direct summand of A. In this paper we give several equivalent conditions of [Formula: see text]-objects in an abelian category. Among other results, we prove that any object M in an abelian category 𝒜 is [Formula: see text] if and only if for every subobject K of M such that K is the intersection [Formula: see text] of perspective direct summands [Formula: see text] and [Formula: see text] of M with [Formula: see text], every morphismr [Formula: see text] can be lifted to an endomorphism [Formula: see text] in [Formula: see text].","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"(D4)-Objects in Abelian Categories\",\"authors\":\"Berke Kalebog̃az, D. Keskin Tütüncü\",\"doi\":\"10.1142/s1005386722000190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let 𝒜 be an abelian category and [Formula: see text]. Then M is called a [Formula: see text]-object if, whenever A and B are subobjects of M with [Formula: see text] and [Formula: see text] is an epimorphism, [Formula: see text] is a direct summand of A. In this paper we give several equivalent conditions of [Formula: see text]-objects in an abelian category. Among other results, we prove that any object M in an abelian category 𝒜 is [Formula: see text] if and only if for every subobject K of M such that K is the intersection [Formula: see text] of perspective direct summands [Formula: see text] and [Formula: see text] of M with [Formula: see text], every morphismr [Formula: see text] can be lifted to an endomorphism [Formula: see text] in [Formula: see text].\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1005386722000190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386722000190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设为一个阿贝尔范畴和[公式:见正文]。当a和B是M的子对象,且[公式:见文]是外胚,[公式:见文]是a的直接和时,则M称为[公式:见文]对象。本文给出了[公式:见文]对象在阿贝尔范畴中的几个等价条件。在其他结果中,我们证明了在一个阿贝算子范畴中的任何对象M是[公式:见文]当且仅当对于M的每一个子对象K,使得K是M的透视直接和[公式:见文]和[公式:见文]与[公式:见文]的交[公式:见文],每一个态态[公式:见文]可以提升为[公式:见文]中的自同态[公式:见文]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
(D4)-Objects in Abelian Categories
Let 𝒜 be an abelian category and [Formula: see text]. Then M is called a [Formula: see text]-object if, whenever A and B are subobjects of M with [Formula: see text] and [Formula: see text] is an epimorphism, [Formula: see text] is a direct summand of A. In this paper we give several equivalent conditions of [Formula: see text]-objects in an abelian category. Among other results, we prove that any object M in an abelian category 𝒜 is [Formula: see text] if and only if for every subobject K of M such that K is the intersection [Formula: see text] of perspective direct summands [Formula: see text] and [Formula: see text] of M with [Formula: see text], every morphismr [Formula: see text] can be lifted to an endomorphism [Formula: see text] in [Formula: see text].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信