Alireza Ahrabian, Tarek Elsaleh, Yasmin Fathy, P. Barnaghi
{"title":"利用MCMC检测多感加速度计数据方差的变化","authors":"Alireza Ahrabian, Tarek Elsaleh, Yasmin Fathy, P. Barnaghi","doi":"10.1109/ICSENS.2017.8234260","DOIUrl":null,"url":null,"abstract":"An important field in exploratory sensory data analysis is the segmentation of time-series data to identify activities of interest. In this work, we analyse the performance of univariate and multi-sensor Bayesian change detection algorithms in segmenting accelerometer data. In particular, we provide theoretical analysis and also performance evaluation on synthetic data and real-world data. The results illustrate the advantages of using multi-sensory variance change detection in the segmentation of dynamic data (e.g. accelerometer data).","PeriodicalId":92164,"journal":{"name":"2017 IEEE Sensors Applications Symposium (SAS). IEEE Staff","volume":"7 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Detecting changes in the variance of multi-sensory accelerometer data using MCMC\",\"authors\":\"Alireza Ahrabian, Tarek Elsaleh, Yasmin Fathy, P. Barnaghi\",\"doi\":\"10.1109/ICSENS.2017.8234260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An important field in exploratory sensory data analysis is the segmentation of time-series data to identify activities of interest. In this work, we analyse the performance of univariate and multi-sensor Bayesian change detection algorithms in segmenting accelerometer data. In particular, we provide theoretical analysis and also performance evaluation on synthetic data and real-world data. The results illustrate the advantages of using multi-sensory variance change detection in the segmentation of dynamic data (e.g. accelerometer data).\",\"PeriodicalId\":92164,\"journal\":{\"name\":\"2017 IEEE Sensors Applications Symposium (SAS). IEEE Staff\",\"volume\":\"7 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Sensors Applications Symposium (SAS). IEEE Staff\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSENS.2017.8234260\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Sensors Applications Symposium (SAS). IEEE Staff","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENS.2017.8234260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detecting changes in the variance of multi-sensory accelerometer data using MCMC
An important field in exploratory sensory data analysis is the segmentation of time-series data to identify activities of interest. In this work, we analyse the performance of univariate and multi-sensor Bayesian change detection algorithms in segmenting accelerometer data. In particular, we provide theoretical analysis and also performance evaluation on synthetic data and real-world data. The results illustrate the advantages of using multi-sensory variance change detection in the segmentation of dynamic data (e.g. accelerometer data).