基于遗传规划的分布式嵌入式系统软硬件协同迭代改进算法

Adam Górski, M. Ogorzałek
{"title":"基于遗传规划的分布式嵌入式系统软硬件协同迭代改进算法","authors":"Adam Górski, M. Ogorzałek","doi":"10.5220/0010391501200125","DOIUrl":null,"url":null,"abstract":"In this work we present a novel genetic programming based iterative improvement approach for hardware/software cosynthesis of distributed embedded systems. The approach starts from a ready solution which is an embryo of a genotype. Other nodes in the genotypes are chromosomes. The chromosomes contain system refinement options. The final solution is obtained after evolution process and mapping genotype to phenotype. Unlike existing genetic programming iterative improvement methodologies our algorithm starts from randomly generated system. Therefore the search space is not constrained by any initial condition. It is also easier for the algorithm to escape local minima of optimizing parameters.","PeriodicalId":72028,"journal":{"name":"... International Conference on Wearable and Implantable Body Sensor Networks. International Conference on Wearable and Implantable Body Sensor Networks","volume":"1 1","pages":"120-125"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Genetic Programming based Iterative Improvement Algorithm for HW/SW Cosynthesis of Distributted Embedded Systems\",\"authors\":\"Adam Górski, M. Ogorzałek\",\"doi\":\"10.5220/0010391501200125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we present a novel genetic programming based iterative improvement approach for hardware/software cosynthesis of distributed embedded systems. The approach starts from a ready solution which is an embryo of a genotype. Other nodes in the genotypes are chromosomes. The chromosomes contain system refinement options. The final solution is obtained after evolution process and mapping genotype to phenotype. Unlike existing genetic programming iterative improvement methodologies our algorithm starts from randomly generated system. Therefore the search space is not constrained by any initial condition. It is also easier for the algorithm to escape local minima of optimizing parameters.\",\"PeriodicalId\":72028,\"journal\":{\"name\":\"... International Conference on Wearable and Implantable Body Sensor Networks. International Conference on Wearable and Implantable Body Sensor Networks\",\"volume\":\"1 1\",\"pages\":\"120-125\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"... International Conference on Wearable and Implantable Body Sensor Networks. International Conference on Wearable and Implantable Body Sensor Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0010391501200125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"... International Conference on Wearable and Implantable Body Sensor Networks. International Conference on Wearable and Implantable Body Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0010391501200125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在这项工作中,我们提出了一种新的基于遗传规划的迭代改进方法,用于分布式嵌入式系统的硬件/软件协同合成。该方法从一个现成的解决方案开始,即一个基因型的胚胎。基因型中的其他节点是染色体。染色体包含系统改进选项。经过进化过程并将基因型定位到表型后得到最终的解决方案。与现有的遗传规划迭代改进方法不同,我们的算法从随机生成的系统开始。因此,搜索空间不受任何初始条件的约束。该算法也更容易避免优化参数的局部极小值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genetic Programming based Iterative Improvement Algorithm for HW/SW Cosynthesis of Distributted Embedded Systems
In this work we present a novel genetic programming based iterative improvement approach for hardware/software cosynthesis of distributed embedded systems. The approach starts from a ready solution which is an embryo of a genotype. Other nodes in the genotypes are chromosomes. The chromosomes contain system refinement options. The final solution is obtained after evolution process and mapping genotype to phenotype. Unlike existing genetic programming iterative improvement methodologies our algorithm starts from randomly generated system. Therefore the search space is not constrained by any initial condition. It is also easier for the algorithm to escape local minima of optimizing parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信