S. Pooniwala, I. Brohi, A. Waheed, AbdulMuqtadir Khan, Zahaezuani Rafiq Hamidon
{"title":"连续油管实时遥测技术为亚静压水力压裂气井延长寿命","authors":"S. Pooniwala, I. Brohi, A. Waheed, AbdulMuqtadir Khan, Zahaezuani Rafiq Hamidon","doi":"10.2523/iptc-22374-ms","DOIUrl":null,"url":null,"abstract":"\n Post-fracturing cleanup and production revival in sub-hydrostatic wells can be challenging. The complexity is amplified in sub-hydrostatic multistage horizontal wells because, by the time the fracturing treatment is concluded, the gas phase of the energized fracturing fluids used during the initial stages of the fracturing treatment dissipates. In the subject sub-hydrostatic well, coiled tubing (CT) with a real-time telemetry system was utilized over a standard nitrogen lifting intervention utilizing conventional CT to revive a hydraulically fractured well due to its capabilities to enable real-time decisions using live bottom-hole data.\n Acid fracturing using an energized fluid treatment was conducted in the subject gas well completed with a multistage open-hole completion system using isolation packers and sleeves. As the subject well was sub-hydrostatic, it was decided to utilize the CT with real-time telemetry system to gain value from its associated downhole parameters during the cleanup phase to alleviate the chances of successfully lifting the well.\n The well was placed in an area with prolific offset producers; hence, there were high production expectations from this well. A review of the well indicated a decreasing trend of reservoir pressure from heel to toe of the lateral, possibly contributing to lower stresses and potential crossflow between stages. Hence, the diverter concentrations and volumes per stage and nitrogen rates were maximized for each new fracturing stage to attempt to create new fractures. Considering the challenges with the well, it was essential that the N2 lifting operation parameters should be optimized to enhance drawdown. It was decided to utilize CT with a real-time telemetry system to control drawdown parameters better and maximize the possibility of success. Real-time downhole pressure measurements were utilized to accurately identify the fluid gradient followed by real-time evaluation and monitoring of the well behavior during N2 lifting operations. The real-time downhole data collected enabled on-the-fly intervention optimization leading to transforming the well into an economic producer.\n The integrated post-treatment analysis workflow provided a robust insight into fracture treatment design and evaluation, reservoir imbibition perspective, openhole completion practices, and the importance of real-time telemetry for challenging interventions. The lessons learned that are presented in this paper could act as a guide to contribute to operational efficiency enhancements and cost savings in other projects.","PeriodicalId":11027,"journal":{"name":"Day 3 Wed, February 23, 2022","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adding a New Lease of Life to a Sub-Hydrostatic Hydraulically Fractured Gas Well Using Coiled Tubing with Real-Time Telemetry\",\"authors\":\"S. Pooniwala, I. Brohi, A. Waheed, AbdulMuqtadir Khan, Zahaezuani Rafiq Hamidon\",\"doi\":\"10.2523/iptc-22374-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Post-fracturing cleanup and production revival in sub-hydrostatic wells can be challenging. The complexity is amplified in sub-hydrostatic multistage horizontal wells because, by the time the fracturing treatment is concluded, the gas phase of the energized fracturing fluids used during the initial stages of the fracturing treatment dissipates. In the subject sub-hydrostatic well, coiled tubing (CT) with a real-time telemetry system was utilized over a standard nitrogen lifting intervention utilizing conventional CT to revive a hydraulically fractured well due to its capabilities to enable real-time decisions using live bottom-hole data.\\n Acid fracturing using an energized fluid treatment was conducted in the subject gas well completed with a multistage open-hole completion system using isolation packers and sleeves. As the subject well was sub-hydrostatic, it was decided to utilize the CT with real-time telemetry system to gain value from its associated downhole parameters during the cleanup phase to alleviate the chances of successfully lifting the well.\\n The well was placed in an area with prolific offset producers; hence, there were high production expectations from this well. A review of the well indicated a decreasing trend of reservoir pressure from heel to toe of the lateral, possibly contributing to lower stresses and potential crossflow between stages. Hence, the diverter concentrations and volumes per stage and nitrogen rates were maximized for each new fracturing stage to attempt to create new fractures. Considering the challenges with the well, it was essential that the N2 lifting operation parameters should be optimized to enhance drawdown. It was decided to utilize CT with a real-time telemetry system to control drawdown parameters better and maximize the possibility of success. Real-time downhole pressure measurements were utilized to accurately identify the fluid gradient followed by real-time evaluation and monitoring of the well behavior during N2 lifting operations. The real-time downhole data collected enabled on-the-fly intervention optimization leading to transforming the well into an economic producer.\\n The integrated post-treatment analysis workflow provided a robust insight into fracture treatment design and evaluation, reservoir imbibition perspective, openhole completion practices, and the importance of real-time telemetry for challenging interventions. The lessons learned that are presented in this paper could act as a guide to contribute to operational efficiency enhancements and cost savings in other projects.\",\"PeriodicalId\":11027,\"journal\":{\"name\":\"Day 3 Wed, February 23, 2022\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Wed, February 23, 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2523/iptc-22374-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, February 23, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2523/iptc-22374-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adding a New Lease of Life to a Sub-Hydrostatic Hydraulically Fractured Gas Well Using Coiled Tubing with Real-Time Telemetry
Post-fracturing cleanup and production revival in sub-hydrostatic wells can be challenging. The complexity is amplified in sub-hydrostatic multistage horizontal wells because, by the time the fracturing treatment is concluded, the gas phase of the energized fracturing fluids used during the initial stages of the fracturing treatment dissipates. In the subject sub-hydrostatic well, coiled tubing (CT) with a real-time telemetry system was utilized over a standard nitrogen lifting intervention utilizing conventional CT to revive a hydraulically fractured well due to its capabilities to enable real-time decisions using live bottom-hole data.
Acid fracturing using an energized fluid treatment was conducted in the subject gas well completed with a multistage open-hole completion system using isolation packers and sleeves. As the subject well was sub-hydrostatic, it was decided to utilize the CT with real-time telemetry system to gain value from its associated downhole parameters during the cleanup phase to alleviate the chances of successfully lifting the well.
The well was placed in an area with prolific offset producers; hence, there were high production expectations from this well. A review of the well indicated a decreasing trend of reservoir pressure from heel to toe of the lateral, possibly contributing to lower stresses and potential crossflow between stages. Hence, the diverter concentrations and volumes per stage and nitrogen rates were maximized for each new fracturing stage to attempt to create new fractures. Considering the challenges with the well, it was essential that the N2 lifting operation parameters should be optimized to enhance drawdown. It was decided to utilize CT with a real-time telemetry system to control drawdown parameters better and maximize the possibility of success. Real-time downhole pressure measurements were utilized to accurately identify the fluid gradient followed by real-time evaluation and monitoring of the well behavior during N2 lifting operations. The real-time downhole data collected enabled on-the-fly intervention optimization leading to transforming the well into an economic producer.
The integrated post-treatment analysis workflow provided a robust insight into fracture treatment design and evaluation, reservoir imbibition perspective, openhole completion practices, and the importance of real-time telemetry for challenging interventions. The lessons learned that are presented in this paper could act as a guide to contribute to operational efficiency enhancements and cost savings in other projects.