J. Richardson, Steven Fingulin, Diwakar Raghunathan, Chris Massie, A. George, H. Lam
{"title":"HPC和加速器设备的比较分析:计算、内存、I/O和功率","authors":"J. Richardson, Steven Fingulin, Diwakar Raghunathan, Chris Massie, A. George, H. Lam","doi":"10.1109/HPRCTA.2010.5670797","DOIUrl":null,"url":null,"abstract":"The computing market constantly experiences the introduction of new devices, architectures, and enhancements to existing ones. Due to the number and diversity of processor and accelerator devices available, it is important to be able to objectively compare them based upon their capabilities regarding computation, I/O, power, and memory interfacing. This paper presents an extension to our existing suite of metrics to quantify additional characteristics of devices and highlight tradeoffs that exist between architectures and specific products. These metrics are applied to a large group of modern devices to evaluate their computational density, power consumption, I/O bandwidth, internal memory bandwidth, and external memory bandwidth.","PeriodicalId":59014,"journal":{"name":"高性能计算技术","volume":"69 1","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Comparative analysis of HPC and accelerator devices: Computation, memory, I/O, and power\",\"authors\":\"J. Richardson, Steven Fingulin, Diwakar Raghunathan, Chris Massie, A. George, H. Lam\",\"doi\":\"10.1109/HPRCTA.2010.5670797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The computing market constantly experiences the introduction of new devices, architectures, and enhancements to existing ones. Due to the number and diversity of processor and accelerator devices available, it is important to be able to objectively compare them based upon their capabilities regarding computation, I/O, power, and memory interfacing. This paper presents an extension to our existing suite of metrics to quantify additional characteristics of devices and highlight tradeoffs that exist between architectures and specific products. These metrics are applied to a large group of modern devices to evaluate their computational density, power consumption, I/O bandwidth, internal memory bandwidth, and external memory bandwidth.\",\"PeriodicalId\":59014,\"journal\":{\"name\":\"高性能计算技术\",\"volume\":\"69 1\",\"pages\":\"1-10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"高性能计算技术\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1109/HPRCTA.2010.5670797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"高性能计算技术","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/HPRCTA.2010.5670797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparative analysis of HPC and accelerator devices: Computation, memory, I/O, and power
The computing market constantly experiences the introduction of new devices, architectures, and enhancements to existing ones. Due to the number and diversity of processor and accelerator devices available, it is important to be able to objectively compare them based upon their capabilities regarding computation, I/O, power, and memory interfacing. This paper presents an extension to our existing suite of metrics to quantify additional characteristics of devices and highlight tradeoffs that exist between architectures and specific products. These metrics are applied to a large group of modern devices to evaluate their computational density, power consumption, I/O bandwidth, internal memory bandwidth, and external memory bandwidth.