混合质量阻尼器:理论与实验功率流分析

IF 1.9 4区 工程技术 Q2 ACOUSTICS
Kevin Billon, Guoying Zhao, C. Collette, S. Chesné
{"title":"混合质量阻尼器:理论与实验功率流分析","authors":"Kevin Billon, Guoying Zhao, C. Collette, S. Chesné","doi":"10.1115/1.4053480","DOIUrl":null,"url":null,"abstract":"\n In this paper, a hybrid mass damper (HMD) and its hyperstability thanks to a power flow approach are studied. The HMD proposed combines an active control system with an optimal passive device. The initial passive system is an electromagnetic Tuned Mass Damper (TMD) and the control law is a modified velocity feedback with a phase compensator. The resulting hybrid controller system is theoretically hyperstable and ensures fail-safe behavior. Experiments are performed to validate the numerical simulation and provide good results in terms of vibration attenuations. Both excitation from the bottom in the frequency domain and shock response in the time domain are tested and analyzed. The different power flows in terms of active and reactive powers are estimated numerically and experimentally on the inertial damper (passive and active) and on the HMD. More over, through a mechanical analogy of the proposed system, it is shown that this hybrid device can be seen as an active realization of an inerter based tuned-mass-damper associated with a sky-hook damper. Observations and analysis provide insight into the hyperstable behavior imposed by the specific control law.","PeriodicalId":49957,"journal":{"name":"Journal of Vibration and Acoustics-Transactions of the Asme","volume":"16 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hybrid mass damper: theoretical and experimental power flow analysis\",\"authors\":\"Kevin Billon, Guoying Zhao, C. Collette, S. Chesné\",\"doi\":\"10.1115/1.4053480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this paper, a hybrid mass damper (HMD) and its hyperstability thanks to a power flow approach are studied. The HMD proposed combines an active control system with an optimal passive device. The initial passive system is an electromagnetic Tuned Mass Damper (TMD) and the control law is a modified velocity feedback with a phase compensator. The resulting hybrid controller system is theoretically hyperstable and ensures fail-safe behavior. Experiments are performed to validate the numerical simulation and provide good results in terms of vibration attenuations. Both excitation from the bottom in the frequency domain and shock response in the time domain are tested and analyzed. The different power flows in terms of active and reactive powers are estimated numerically and experimentally on the inertial damper (passive and active) and on the HMD. More over, through a mechanical analogy of the proposed system, it is shown that this hybrid device can be seen as an active realization of an inerter based tuned-mass-damper associated with a sky-hook damper. Observations and analysis provide insight into the hyperstable behavior imposed by the specific control law.\",\"PeriodicalId\":49957,\"journal\":{\"name\":\"Journal of Vibration and Acoustics-Transactions of the Asme\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vibration and Acoustics-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4053480\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vibration and Acoustics-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4053480","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了基于潮流法的混合质量阻尼器及其超稳定性问题。提出的HMD将主动控制系统与最优无源装置相结合。初始被动系统为电磁调谐质量阻尼器(TMD),控制律为带相位补偿器的修正速度反馈。由此产生的混合控制器系统理论上是超稳定的,并确保故障安全行为。通过实验验证了数值模拟的正确性,得到了较好的减振效果。测试和分析了频域的底部激励和时域的冲击响应。在惯性阻尼器(被动和主动)和HMD上对有功和无功功率的不同功率流进行了数值和实验估计。此外,通过对所提出系统的力学类比,表明该混合装置可以看作是与天钩阻尼器相关联的基于干涉器的调谐质量阻尼器的主动实现。观察和分析提供了对特定控制律施加的超稳定行为的洞察。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid mass damper: theoretical and experimental power flow analysis
In this paper, a hybrid mass damper (HMD) and its hyperstability thanks to a power flow approach are studied. The HMD proposed combines an active control system with an optimal passive device. The initial passive system is an electromagnetic Tuned Mass Damper (TMD) and the control law is a modified velocity feedback with a phase compensator. The resulting hybrid controller system is theoretically hyperstable and ensures fail-safe behavior. Experiments are performed to validate the numerical simulation and provide good results in terms of vibration attenuations. Both excitation from the bottom in the frequency domain and shock response in the time domain are tested and analyzed. The different power flows in terms of active and reactive powers are estimated numerically and experimentally on the inertial damper (passive and active) and on the HMD. More over, through a mechanical analogy of the proposed system, it is shown that this hybrid device can be seen as an active realization of an inerter based tuned-mass-damper associated with a sky-hook damper. Observations and analysis provide insight into the hyperstable behavior imposed by the specific control law.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
11.80%
发文量
79
审稿时长
7 months
期刊介绍: The Journal of Vibration and Acoustics is sponsored jointly by the Design Engineering and the Noise Control and Acoustics Divisions of ASME. The Journal is the premier international venue for publication of original research concerning mechanical vibration and sound. Our mission is to serve researchers and practitioners who seek cutting-edge theories and computational and experimental methods that advance these fields. Our published studies reveal how mechanical vibration and sound impact the design and performance of engineered devices and structures and how to control their negative influences. Vibration of continuous and discrete dynamical systems; Linear and nonlinear vibrations; Random vibrations; Wave propagation; Modal analysis; Mechanical signature analysis; Structural dynamics and control; Vibration energy harvesting; Vibration suppression; Vibration isolation; Passive and active damping; Machinery dynamics; Rotor dynamics; Acoustic emission; Noise control; Machinery noise; Structural acoustics; Fluid-structure interaction; Aeroelasticity; Flow-induced vibration and noise.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信