使用SinGAN生成高分辨率气候降水数据

IF 4.2 3区 地球科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yang Wang, H. Karimi
{"title":"使用SinGAN生成高分辨率气候降水数据","authors":"Yang Wang, H. Karimi","doi":"10.1080/20964471.2022.2140868","DOIUrl":null,"url":null,"abstract":"ABSTRACT High-resolution (HR) climate data are indispensable for studying regional climate trends, disaster prediction, and urban development planning in the face of climate change. However, state-of-the-art long-term global climate simulations do not provide appropriate HR climate data. Deep learning models are often used to obtain high-resolution climate data. However, due to the fact that these models require sufficient low-resolution (LR) and HR data pairs for the training process, they cannot be applied to scenario with inadequate training data. In this paper, we explore the applicability of a single image generative adversarial network (SinGAN) in generating HR climate data. SinGAN relies on single LR input data to obtain the corresponding HR data. To improve the performance for extreme-value regions, we propose a SinGAN combined with the weighted patchGAN discriminator (WSinGAN). The proposed WSinGAN outperforms comparable models in generating HR precipitation data, and its results are close to real HR data with sharp gradients and more refined small-scale features. We also test the scalability of the pre-trained WSinGAN for unseen samples and show that although only a single LR sample is used to train WSinGAN, it can still produce reliable HR data for unseen data.","PeriodicalId":8765,"journal":{"name":"Big Earth Data","volume":"4 1","pages":"81 - 100"},"PeriodicalIF":4.2000,"publicationDate":"2022-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Generating high-resolution climatological precipitation data using SinGAN\",\"authors\":\"Yang Wang, H. Karimi\",\"doi\":\"10.1080/20964471.2022.2140868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT High-resolution (HR) climate data are indispensable for studying regional climate trends, disaster prediction, and urban development planning in the face of climate change. However, state-of-the-art long-term global climate simulations do not provide appropriate HR climate data. Deep learning models are often used to obtain high-resolution climate data. However, due to the fact that these models require sufficient low-resolution (LR) and HR data pairs for the training process, they cannot be applied to scenario with inadequate training data. In this paper, we explore the applicability of a single image generative adversarial network (SinGAN) in generating HR climate data. SinGAN relies on single LR input data to obtain the corresponding HR data. To improve the performance for extreme-value regions, we propose a SinGAN combined with the weighted patchGAN discriminator (WSinGAN). The proposed WSinGAN outperforms comparable models in generating HR precipitation data, and its results are close to real HR data with sharp gradients and more refined small-scale features. We also test the scalability of the pre-trained WSinGAN for unseen samples and show that although only a single LR sample is used to train WSinGAN, it can still produce reliable HR data for unseen data.\",\"PeriodicalId\":8765,\"journal\":{\"name\":\"Big Earth Data\",\"volume\":\"4 1\",\"pages\":\"81 - 100\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2022-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big Earth Data\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/20964471.2022.2140868\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Earth Data","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/20964471.2022.2140868","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

面对气候变化,高分辨率(HR)气候数据是研究区域气候趋势、灾害预测和城市发展规划不可或缺的数据。然而,最先进的长期全球气候模拟不能提供适当的HR气候数据。深度学习模型通常用于获得高分辨率的气候数据。然而,由于这些模型在训练过程中需要足够的低分辨率(LR)和HR数据对,因此它们不能应用于训练数据不足的场景。在本文中,我们探讨了单图像生成对抗网络(SinGAN)在生成HR气候数据中的适用性。SinGAN依靠单个LR输入数据来获取相应的HR数据。为了提高极值区域的性能,我们提出了一种结合加权patchGAN鉴别器(WSinGAN)的SinGAN。本文提出的WSinGAN模型在生成HR降水数据方面优于可比模型,其结果接近真实HR数据,具有明显的梯度和更精细的小尺度特征。我们还测试了预训练的WSinGAN对于未知样本的可扩展性,并表明尽管只使用单个LR样本来训练WSinGAN,但它仍然可以为未知数据生成可靠的HR数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generating high-resolution climatological precipitation data using SinGAN
ABSTRACT High-resolution (HR) climate data are indispensable for studying regional climate trends, disaster prediction, and urban development planning in the face of climate change. However, state-of-the-art long-term global climate simulations do not provide appropriate HR climate data. Deep learning models are often used to obtain high-resolution climate data. However, due to the fact that these models require sufficient low-resolution (LR) and HR data pairs for the training process, they cannot be applied to scenario with inadequate training data. In this paper, we explore the applicability of a single image generative adversarial network (SinGAN) in generating HR climate data. SinGAN relies on single LR input data to obtain the corresponding HR data. To improve the performance for extreme-value regions, we propose a SinGAN combined with the weighted patchGAN discriminator (WSinGAN). The proposed WSinGAN outperforms comparable models in generating HR precipitation data, and its results are close to real HR data with sharp gradients and more refined small-scale features. We also test the scalability of the pre-trained WSinGAN for unseen samples and show that although only a single LR sample is used to train WSinGAN, it can still produce reliable HR data for unseen data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Big Earth Data
Big Earth Data Earth and Planetary Sciences-Computers in Earth Sciences
CiteScore
7.40
自引率
10.00%
发文量
60
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信