涉及去极化通道和转置去极化通道的两类映射的完全正性

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Xiuhong Sun, Yuan Li
{"title":"涉及去极化通道和转置去极化通道的两类映射的完全正性","authors":"Xiuhong Sun, Yuan Li","doi":"10.1142/s1230161221500062","DOIUrl":null,"url":null,"abstract":"In this note, we mainly study the necessary and sufficient conditions for the complete positivity of generalizations of depolarizing and transpose-depolarizing channels. Specifically, we define [Formula: see text] and [Formula: see text], where [Formula: see text] (the set of all bounded linear operators on the finite-dimensional Hilbert space [Formula: see text] is given and [Formula: see text] is the transpose of [Formula: see text] in a fixed orthonormal basis of [Formula: see text] First, we show that [Formula: see text] is completely positive if and only if [Formula: see text] is a positive map, which is equivalent to [Formula: see text] Moreover, [Formula: see text] is a completely positive map if and only if [Formula: see text] and [Formula: see text] At last, we also get that [Formula: see text] is a completely positive map if and only if [Formula: see text] with [Formula: see text] for all [Formula: see text] where [Formula: see text] are eigenvalues of [Formula: see text].","PeriodicalId":54681,"journal":{"name":"Open Systems & Information Dynamics","volume":"60 1","pages":"2150006:1-2150006:16"},"PeriodicalIF":1.3000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Complete Positivity of Two Class of Maps Involving Depolarizing and Transpose-Depolarizing Channels\",\"authors\":\"Xiuhong Sun, Yuan Li\",\"doi\":\"10.1142/s1230161221500062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note, we mainly study the necessary and sufficient conditions for the complete positivity of generalizations of depolarizing and transpose-depolarizing channels. Specifically, we define [Formula: see text] and [Formula: see text], where [Formula: see text] (the set of all bounded linear operators on the finite-dimensional Hilbert space [Formula: see text] is given and [Formula: see text] is the transpose of [Formula: see text] in a fixed orthonormal basis of [Formula: see text] First, we show that [Formula: see text] is completely positive if and only if [Formula: see text] is a positive map, which is equivalent to [Formula: see text] Moreover, [Formula: see text] is a completely positive map if and only if [Formula: see text] and [Formula: see text] At last, we also get that [Formula: see text] is a completely positive map if and only if [Formula: see text] with [Formula: see text] for all [Formula: see text] where [Formula: see text] are eigenvalues of [Formula: see text].\",\"PeriodicalId\":54681,\"journal\":{\"name\":\"Open Systems & Information Dynamics\",\"volume\":\"60 1\",\"pages\":\"2150006:1-2150006:16\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Systems & Information Dynamics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s1230161221500062\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Systems & Information Dynamics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s1230161221500062","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 1

摘要

本文主要研究了消极化和转置消极化通道推广的完全正性的充分必要条件。具体来说,我们定义了[公式:见文]和[公式:见文],其中[公式:见文]给出了有限维希尔伯特空间上所有有界线性算子的集合[公式:见文],[公式:见文]是[公式:见文]在固定正交基上的转置[公式:见文]。首先,我们证明[公式:见文]是完全正的当且仅当[公式:见文]是一个正映射,它等价于[公式:而且,当且仅当[公式:见文]和[公式:见文]是一个完全正的映射,最后我们还得到,当且仅当[公式:见文]与[公式:见文]对于所有[公式:见文],其中[公式:见文]是[公式:见文]的特征值时,[公式:见文]是一个完全正的映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complete Positivity of Two Class of Maps Involving Depolarizing and Transpose-Depolarizing Channels
In this note, we mainly study the necessary and sufficient conditions for the complete positivity of generalizations of depolarizing and transpose-depolarizing channels. Specifically, we define [Formula: see text] and [Formula: see text], where [Formula: see text] (the set of all bounded linear operators on the finite-dimensional Hilbert space [Formula: see text] is given and [Formula: see text] is the transpose of [Formula: see text] in a fixed orthonormal basis of [Formula: see text] First, we show that [Formula: see text] is completely positive if and only if [Formula: see text] is a positive map, which is equivalent to [Formula: see text] Moreover, [Formula: see text] is a completely positive map if and only if [Formula: see text] and [Formula: see text] At last, we also get that [Formula: see text] is a completely positive map if and only if [Formula: see text] with [Formula: see text] for all [Formula: see text] where [Formula: see text] are eigenvalues of [Formula: see text].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Open Systems & Information Dynamics
Open Systems & Information Dynamics 工程技术-计算机:信息系统
CiteScore
1.40
自引率
12.50%
发文量
4
审稿时长
>12 weeks
期刊介绍: The aim of the Journal is to promote interdisciplinary research in mathematics, physics, engineering and life sciences centered around the issues of broadly understood information processing, storage and transmission, in both quantum and classical settings. Our special interest lies in the information-theoretic approach to phenomena dealing with dynamics and thermodynamics, control, communication, filtering, memory and cooperative behaviour, etc., in open complex systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信