{"title":"与截断电流李代数相关的有限w代数","authors":"Xiao He","doi":"10.3336/gm.57.1.02","DOIUrl":null,"url":null,"abstract":"Finite W-algebras associated to truncated current Lie algebras are studied in this paper. We show that some properties of finite W-algebras in the semisimple case hold in the truncated current case. In particular, Kostant's theorem and Skryabin equivalence hold in our case. As an application, we give a classification of simple Whittaker modules for truncated current Lie algebras in the \\(s\\ell_2\\) case.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite W-algebras associated to truncated current Lie algebras\",\"authors\":\"Xiao He\",\"doi\":\"10.3336/gm.57.1.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Finite W-algebras associated to truncated current Lie algebras are studied in this paper. We show that some properties of finite W-algebras in the semisimple case hold in the truncated current case. In particular, Kostant's theorem and Skryabin equivalence hold in our case. As an application, we give a classification of simple Whittaker modules for truncated current Lie algebras in the \\\\(s\\\\ell_2\\\\) case.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3336/gm.57.1.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3336/gm.57.1.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Finite W-algebras associated to truncated current Lie algebras
Finite W-algebras associated to truncated current Lie algebras are studied in this paper. We show that some properties of finite W-algebras in the semisimple case hold in the truncated current case. In particular, Kostant's theorem and Skryabin equivalence hold in our case. As an application, we give a classification of simple Whittaker modules for truncated current Lie algebras in the \(s\ell_2\) case.