用机器学习确定热膨胀系数

Mario Machů, Ľ. Drozdová, B. Smetana, J. Růžička, S. Zlá, S. Sorokina
{"title":"用机器学习确定热膨胀系数","authors":"Mario Machů, Ľ. Drozdová, B. Smetana, J. Růžička, S. Zlá, S. Sorokina","doi":"10.37904/metal.2020.3462","DOIUrl":null,"url":null,"abstract":"Objective of this work is to model the thermal expansion coefficients of selected steel grade and compare results with those measured by TMA method. Coefficient of thermal expansion is described as a function of steel composition (C, Mn, P, S, Si, Cr, Ni, Mo) and temperature.Experimental values are described and compared with model. Correlation analysis of these data sets is done. Presented model is based on using artificial neural network and represents a preliminary test of method capability to be used for such problems class – for predicting of thermophysical properties depending on composition and temperatre.","PeriodicalId":21337,"journal":{"name":"Revue De Metallurgie-cahiers D Informations Techniques","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination of a coefficient of thermal expansion by machine learning\",\"authors\":\"Mario Machů, Ľ. Drozdová, B. Smetana, J. Růžička, S. Zlá, S. Sorokina\",\"doi\":\"10.37904/metal.2020.3462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective of this work is to model the thermal expansion coefficients of selected steel grade and compare results with those measured by TMA method. Coefficient of thermal expansion is described as a function of steel composition (C, Mn, P, S, Si, Cr, Ni, Mo) and temperature.Experimental values are described and compared with model. Correlation analysis of these data sets is done. Presented model is based on using artificial neural network and represents a preliminary test of method capability to be used for such problems class – for predicting of thermophysical properties depending on composition and temperatre.\",\"PeriodicalId\":21337,\"journal\":{\"name\":\"Revue De Metallurgie-cahiers D Informations Techniques\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revue De Metallurgie-cahiers D Informations Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37904/metal.2020.3462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revue De Metallurgie-cahiers D Informations Techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37904/metal.2020.3462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本工作的目的是对选定钢种的热膨胀系数进行建模,并与TMA法测量的结果进行比较。热膨胀系数被描述为钢成分(C, Mn, P, S, Si, Cr, Ni, Mo)和温度的函数。描述了实验值,并与模型进行了比较。对这些数据集进行了相关性分析。所提出的模型是基于人工神经网络的,代表了用于此类问题的方法能力的初步测试-用于预测依赖于成分和温度的热物理性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determination of a coefficient of thermal expansion by machine learning
Objective of this work is to model the thermal expansion coefficients of selected steel grade and compare results with those measured by TMA method. Coefficient of thermal expansion is described as a function of steel composition (C, Mn, P, S, Si, Cr, Ni, Mo) and temperature.Experimental values are described and compared with model. Correlation analysis of these data sets is done. Presented model is based on using artificial neural network and represents a preliminary test of method capability to be used for such problems class – for predicting of thermophysical properties depending on composition and temperatre.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
24 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信