{"title":"传输-互反传输指数和图的协指数","authors":"H. Ramane, Deepa V. Kitturmath, Kavita Bhajantri","doi":"10.2478/ausi-2022-0006","DOIUrl":null,"url":null,"abstract":"Abstract The transmission of a vertex u in a connected graph G is defined as σ(u) = Σv∈V(G) d(u, v) and reciprocal transmission of a vertex u is defined as rs(u)=∑v∈V(G)1d(u,v) rs(u) = \\sum\\nolimits_{v \\in V\\left( G \\right)} {{1 \\over {d\\left( {u,v} \\right)}}} , where d(u, v) is the distance between vertex u and v in G. In this paper we define new distance based topological index of a connected graph G called transmission-reciprocal transmission index TRT(G)=∑uv∈E(G)(σ(u)rs(u)+σ(v)rs(v)) TRT\\left( G \\right) = \\sum\\nolimits_{uv \\in E\\left( G \\right)} {\\left( {{{\\sigma \\left( u \\right)} \\over {rs\\left( u \\right)}} + {{\\sigma \\left( v \\right)} \\over {rs\\left( v \\right)}}} \\right)} and its coindex TRT¯(G)=∑uv∉E(G)(σ(u)rs(u)+σ(v)rs(v)) \\overline {TRT} \\left( G \\right) = \\sum\\nolimits_{uv \\notin E\\left( G \\right)} {\\left( {{{\\sigma \\left( u \\right)} \\over {rs\\left( u \\right)}} + {{\\sigma \\left( v \\right)} \\over {rs\\left( v \\right)}}} \\right)} , where E(G) is the edge set of a graph G and establish the relation between TRT(G) and TRT¯(G) \\overline {TRT} \\left( G \\right) (G). Further compute this index for some standard class of graphs and obtain bounds for it.","PeriodicalId":41480,"journal":{"name":"Acta Universitatis Sapientiae Informatica","volume":"8 1","pages":"84 - 103"},"PeriodicalIF":0.3000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transmission-reciprocal transmission index and coindex of graphs\",\"authors\":\"H. Ramane, Deepa V. Kitturmath, Kavita Bhajantri\",\"doi\":\"10.2478/ausi-2022-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The transmission of a vertex u in a connected graph G is defined as σ(u) = Σv∈V(G) d(u, v) and reciprocal transmission of a vertex u is defined as rs(u)=∑v∈V(G)1d(u,v) rs(u) = \\\\sum\\\\nolimits_{v \\\\in V\\\\left( G \\\\right)} {{1 \\\\over {d\\\\left( {u,v} \\\\right)}}} , where d(u, v) is the distance between vertex u and v in G. In this paper we define new distance based topological index of a connected graph G called transmission-reciprocal transmission index TRT(G)=∑uv∈E(G)(σ(u)rs(u)+σ(v)rs(v)) TRT\\\\left( G \\\\right) = \\\\sum\\\\nolimits_{uv \\\\in E\\\\left( G \\\\right)} {\\\\left( {{{\\\\sigma \\\\left( u \\\\right)} \\\\over {rs\\\\left( u \\\\right)}} + {{\\\\sigma \\\\left( v \\\\right)} \\\\over {rs\\\\left( v \\\\right)}}} \\\\right)} and its coindex TRT¯(G)=∑uv∉E(G)(σ(u)rs(u)+σ(v)rs(v)) \\\\overline {TRT} \\\\left( G \\\\right) = \\\\sum\\\\nolimits_{uv \\\\notin E\\\\left( G \\\\right)} {\\\\left( {{{\\\\sigma \\\\left( u \\\\right)} \\\\over {rs\\\\left( u \\\\right)}} + {{\\\\sigma \\\\left( v \\\\right)} \\\\over {rs\\\\left( v \\\\right)}}} \\\\right)} , where E(G) is the edge set of a graph G and establish the relation between TRT(G) and TRT¯(G) \\\\overline {TRT} \\\\left( G \\\\right) (G). Further compute this index for some standard class of graphs and obtain bounds for it.\",\"PeriodicalId\":41480,\"journal\":{\"name\":\"Acta Universitatis Sapientiae Informatica\",\"volume\":\"8 1\",\"pages\":\"84 - 103\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Universitatis Sapientiae Informatica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausi-2022-0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Universitatis Sapientiae Informatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausi-2022-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Transmission-reciprocal transmission index and coindex of graphs
Abstract The transmission of a vertex u in a connected graph G is defined as σ(u) = Σv∈V(G) d(u, v) and reciprocal transmission of a vertex u is defined as rs(u)=∑v∈V(G)1d(u,v) rs(u) = \sum\nolimits_{v \in V\left( G \right)} {{1 \over {d\left( {u,v} \right)}}} , where d(u, v) is the distance between vertex u and v in G. In this paper we define new distance based topological index of a connected graph G called transmission-reciprocal transmission index TRT(G)=∑uv∈E(G)(σ(u)rs(u)+σ(v)rs(v)) TRT\left( G \right) = \sum\nolimits_{uv \in E\left( G \right)} {\left( {{{\sigma \left( u \right)} \over {rs\left( u \right)}} + {{\sigma \left( v \right)} \over {rs\left( v \right)}}} \right)} and its coindex TRT¯(G)=∑uv∉E(G)(σ(u)rs(u)+σ(v)rs(v)) \overline {TRT} \left( G \right) = \sum\nolimits_{uv \notin E\left( G \right)} {\left( {{{\sigma \left( u \right)} \over {rs\left( u \right)}} + {{\sigma \left( v \right)} \over {rs\left( v \right)}}} \right)} , where E(G) is the edge set of a graph G and establish the relation between TRT(G) and TRT¯(G) \overline {TRT} \left( G \right) (G). Further compute this index for some standard class of graphs and obtain bounds for it.