光滑和微翅管的新型流动沸腾摩擦压降倍增器

IF 0.4 4区 工程技术 Q4 NUCLEAR SCIENCE & TECHNOLOGY
Kerntechnik Pub Date : 2022-06-27 DOI:10.1515/kern-2022-0012
A. Celen, A. S. Dalkılıç
{"title":"光滑和微翅管的新型流动沸腾摩擦压降倍增器","authors":"A. Celen, A. S. Dalkılıç","doi":"10.1515/kern-2022-0012","DOIUrl":null,"url":null,"abstract":"Abstract The accurate calculation of pressure drop of evaporators/condensers are crucial and related with the pumping power, performance coefficient and energy consumption in a refrigeration equipment. This work aligns frictional pressure drop models/correlations with the experimental outcomes of boiling pressure drop of R134a in horizontal smooth and microfin copper tubes with equivalent outer diameter of 9.52 mm. The pressure drop through the test tube is obtained with a differential pressure transducer directly. Effective parameters are specified for smooth and microfin tubes and the most compatible models/correlations, 12 for smooth tubes and 9 for microfin ones, are determined accurately in relation to the consequences of investigation during intermittent and annular flow regime. Moreover, new two-phase multipliers have been developed by using regression analyses of 182 data points based on Lockhart-Martinelli parameter for each test tubes separately, and their predictability are found to be better than others in the literature as novel ones. Average errors of the developed empirical correlations are 11% for smooth and for 7% for microfin tubes. Finally, the measured data is given for the validation issues of researchers who can benefit from most of the investigated pressure drop models with tolerable accuracy regarding with their HEX design analyses.","PeriodicalId":17787,"journal":{"name":"Kerntechnik","volume":"208 1","pages":"420 - 451"},"PeriodicalIF":0.4000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"New flow boiling frictional pressure drop multipliers for smooth and microfin tubes\",\"authors\":\"A. Celen, A. S. Dalkılıç\",\"doi\":\"10.1515/kern-2022-0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The accurate calculation of pressure drop of evaporators/condensers are crucial and related with the pumping power, performance coefficient and energy consumption in a refrigeration equipment. This work aligns frictional pressure drop models/correlations with the experimental outcomes of boiling pressure drop of R134a in horizontal smooth and microfin copper tubes with equivalent outer diameter of 9.52 mm. The pressure drop through the test tube is obtained with a differential pressure transducer directly. Effective parameters are specified for smooth and microfin tubes and the most compatible models/correlations, 12 for smooth tubes and 9 for microfin ones, are determined accurately in relation to the consequences of investigation during intermittent and annular flow regime. Moreover, new two-phase multipliers have been developed by using regression analyses of 182 data points based on Lockhart-Martinelli parameter for each test tubes separately, and their predictability are found to be better than others in the literature as novel ones. Average errors of the developed empirical correlations are 11% for smooth and for 7% for microfin tubes. Finally, the measured data is given for the validation issues of researchers who can benefit from most of the investigated pressure drop models with tolerable accuracy regarding with their HEX design analyses.\",\"PeriodicalId\":17787,\"journal\":{\"name\":\"Kerntechnik\",\"volume\":\"208 1\",\"pages\":\"420 - 451\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kerntechnik\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/kern-2022-0012\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kerntechnik","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/kern-2022-0012","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

蒸发器/冷凝器压降的准确计算至关重要,它关系到制冷设备的抽运功率、性能系数和能耗。本文将R134a在等效外径为9.52 mm的水平光滑和微翅片铜管中沸腾压降的实验结果与摩擦压降模型/相关性进行了比较。通过试管的压降是用差压传感器直接获得的。有效参数被指定为光滑管和微鳍管,最兼容的模型/相关性,光滑管12和微鳍管9,被准确地确定与间歇性和环空流动状态下的研究结果有关。此外,通过对每个试管的182个数点的Lockhart-Martinelli参数分别进行回归分析,开发了新的两相乘数,其可预测性优于文献中的其他新方法。开发的经验相关性的平均误差为11%的光滑和为7%的微鳍管。最后,为研究人员提供了验证问题的测量数据,研究人员可以从大多数调查的压降模型中受益,并具有可容忍的精度,关于他们的HEX设计分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New flow boiling frictional pressure drop multipliers for smooth and microfin tubes
Abstract The accurate calculation of pressure drop of evaporators/condensers are crucial and related with the pumping power, performance coefficient and energy consumption in a refrigeration equipment. This work aligns frictional pressure drop models/correlations with the experimental outcomes of boiling pressure drop of R134a in horizontal smooth and microfin copper tubes with equivalent outer diameter of 9.52 mm. The pressure drop through the test tube is obtained with a differential pressure transducer directly. Effective parameters are specified for smooth and microfin tubes and the most compatible models/correlations, 12 for smooth tubes and 9 for microfin ones, are determined accurately in relation to the consequences of investigation during intermittent and annular flow regime. Moreover, new two-phase multipliers have been developed by using regression analyses of 182 data points based on Lockhart-Martinelli parameter for each test tubes separately, and their predictability are found to be better than others in the literature as novel ones. Average errors of the developed empirical correlations are 11% for smooth and for 7% for microfin tubes. Finally, the measured data is given for the validation issues of researchers who can benefit from most of the investigated pressure drop models with tolerable accuracy regarding with their HEX design analyses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Kerntechnik
Kerntechnik 工程技术-核科学技术
CiteScore
0.90
自引率
20.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: Kerntechnik is an independent journal for nuclear engineering (including design, operation, safety and economics of nuclear power stations, research reactors and simulators), energy systems, radiation (ionizing radiation in industry, medicine and research) and radiological protection (biological effects of ionizing radiation, the system of protection for occupational, medical and public exposures, the assessment of doses, operational protection and safety programs, management of radioactive wastes, decommissioning and regulatory requirements).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信