封面接触图

IF 0.4 Q4 MATHEMATICS
N. Atienza, N. D. Castro, C. Cortés, Maria Angeles Garrido, C. Grima, G. Hernández, A. Márquez, A. Moreno-González, M. Nöllenburg, J. Portillo, Pedro Reyes, Jesus Valenzuela, M. Villar, A. Wolff
{"title":"封面接触图","authors":"N. Atienza, N. D. Castro, C. Cortés, Maria Angeles Garrido, C. Grima, G. Hernández, A. Márquez, A. Moreno-González, M. Nöllenburg, J. Portillo, Pedro Reyes, Jesus Valenzuela, M. Villar, A. Wolff","doi":"10.20382/jocg.v3i1a6","DOIUrl":null,"url":null,"abstract":"We study problems that arise in the context of covering certain geometric objects called seeds (e.g., points or disks) by a set of other geometric objects called cover (e.g., a set of disks or homothetic triangles). We insist that the interiors of the seeds and the cover elements are pairwise disjoint, respectively, but they can touch. We call the contact graph of a cover a cover contact graph (CCG). We are interested in three types of tasks, both in the general case and in the special case of seeds on a line: (a) deciding whether a given seed set has a connected CCG, (b) deciding whether a given graph has a realization as a CCG on a given seed set, and (c) bounding the sizes of certain classes of CCG's. Concerning (a) we give efficient algorithms for the case that seeds are points and show that the problem becomes hard if seeds and covers are disks. Concerning (b) we show that this problem is hard even for point seeds and disk covers (given a fixed correspondence between graph vertices and seeds). Concerning (c) we obtain upper and lower bounds on the number of CCG's for point seeds.","PeriodicalId":43044,"journal":{"name":"Journal of Computational Geometry","volume":"4 1","pages":"171-182"},"PeriodicalIF":0.4000,"publicationDate":"2007-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Cover Contact Graphs\",\"authors\":\"N. Atienza, N. D. Castro, C. Cortés, Maria Angeles Garrido, C. Grima, G. Hernández, A. Márquez, A. Moreno-González, M. Nöllenburg, J. Portillo, Pedro Reyes, Jesus Valenzuela, M. Villar, A. Wolff\",\"doi\":\"10.20382/jocg.v3i1a6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study problems that arise in the context of covering certain geometric objects called seeds (e.g., points or disks) by a set of other geometric objects called cover (e.g., a set of disks or homothetic triangles). We insist that the interiors of the seeds and the cover elements are pairwise disjoint, respectively, but they can touch. We call the contact graph of a cover a cover contact graph (CCG). We are interested in three types of tasks, both in the general case and in the special case of seeds on a line: (a) deciding whether a given seed set has a connected CCG, (b) deciding whether a given graph has a realization as a CCG on a given seed set, and (c) bounding the sizes of certain classes of CCG's. Concerning (a) we give efficient algorithms for the case that seeds are points and show that the problem becomes hard if seeds and covers are disks. Concerning (b) we show that this problem is hard even for point seeds and disk covers (given a fixed correspondence between graph vertices and seeds). Concerning (c) we obtain upper and lower bounds on the number of CCG's for point seeds.\",\"PeriodicalId\":43044,\"journal\":{\"name\":\"Journal of Computational Geometry\",\"volume\":\"4 1\",\"pages\":\"171-182\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2007-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20382/jocg.v3i1a6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20382/jocg.v3i1a6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

摘要

我们研究的问题是,在覆盖某些称为种子的几何对象(例如,点或磁盘)的背景下,由一组称为覆盖的其他几何对象(例如,一组磁盘或同质三角形)。我们坚持种子和盖件的内部是分开的,但它们可以接触。我们称封面的接触图为封面接触图(CCG)。我们对三种类型的任务感兴趣,既包括一般情况下的任务,也包括线上种子的特殊情况下的任务:(a)决定给定的种子集是否有连通的CCG, (b)决定给定的图是否在给定的种子集上具有作为CCG的实现,以及(c)限定CCG的某些类的大小。关于(a)我们给出了种子是点的情况下的有效算法,并表明当种子和覆盖都是盘时问题变得困难。关于(b),我们证明了即使对于点种子和磁盘覆盖(给定图顶点和种子之间的固定对应关系),这个问题也是困难的。关于(c),我们得到了点种子CCG数的上界和下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cover Contact Graphs
We study problems that arise in the context of covering certain geometric objects called seeds (e.g., points or disks) by a set of other geometric objects called cover (e.g., a set of disks or homothetic triangles). We insist that the interiors of the seeds and the cover elements are pairwise disjoint, respectively, but they can touch. We call the contact graph of a cover a cover contact graph (CCG). We are interested in three types of tasks, both in the general case and in the special case of seeds on a line: (a) deciding whether a given seed set has a connected CCG, (b) deciding whether a given graph has a realization as a CCG on a given seed set, and (c) bounding the sizes of certain classes of CCG's. Concerning (a) we give efficient algorithms for the case that seeds are points and show that the problem becomes hard if seeds and covers are disks. Concerning (b) we show that this problem is hard even for point seeds and disk covers (given a fixed correspondence between graph vertices and seeds). Concerning (c) we obtain upper and lower bounds on the number of CCG's for point seeds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
0
审稿时长
52 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信