{"title":"基于田口数据包络分析法的伺服气动定位系统比例模糊控制器优化","authors":"D. Saravanakumar, B. Mohan, T. Muthuramalingam","doi":"10.4103/0976-8580.141193","DOIUrl":null,"url":null,"abstract":"Even though pneumatic actuators exhibit many advantages, their usage is limited due to its nonlinear nature. In this paper, a sugeno type proportional fuzzy controller has been designed for the fast and accurate position control of pneumatic cylinder. The servo positioning system for pneumatic cylinder with the optimal fuzzy controller has been simulated using Matlab-Simulink software. The design of the fuzzy controller has been optimized by proper selection of range for the membership functions of the input variable of the controller. The objectives for optimizing the controller are to minimize the settling time and the maximum overshoot. This multi-objective optimization problem has been solved by Taguchi based data envelopment analysis based ranking methodology. From the simulation, the optimal controller response for a step input change is obtained as settling time 0.16s and overshoot 0.5%.","PeriodicalId":53400,"journal":{"name":"Pakistan Journal of Engineering Technology","volume":"15 1","pages":"115"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Optimization of Proportional Fuzzy Controller for Servo Pneumatic Positioning System Using Taguchi: Data Envelopment Analysis Based Ranking Methodology\",\"authors\":\"D. Saravanakumar, B. Mohan, T. Muthuramalingam\",\"doi\":\"10.4103/0976-8580.141193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Even though pneumatic actuators exhibit many advantages, their usage is limited due to its nonlinear nature. In this paper, a sugeno type proportional fuzzy controller has been designed for the fast and accurate position control of pneumatic cylinder. The servo positioning system for pneumatic cylinder with the optimal fuzzy controller has been simulated using Matlab-Simulink software. The design of the fuzzy controller has been optimized by proper selection of range for the membership functions of the input variable of the controller. The objectives for optimizing the controller are to minimize the settling time and the maximum overshoot. This multi-objective optimization problem has been solved by Taguchi based data envelopment analysis based ranking methodology. From the simulation, the optimal controller response for a step input change is obtained as settling time 0.16s and overshoot 0.5%.\",\"PeriodicalId\":53400,\"journal\":{\"name\":\"Pakistan Journal of Engineering Technology\",\"volume\":\"15 1\",\"pages\":\"115\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pakistan Journal of Engineering Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/0976-8580.141193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pakistan Journal of Engineering Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/0976-8580.141193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimization of Proportional Fuzzy Controller for Servo Pneumatic Positioning System Using Taguchi: Data Envelopment Analysis Based Ranking Methodology
Even though pneumatic actuators exhibit many advantages, their usage is limited due to its nonlinear nature. In this paper, a sugeno type proportional fuzzy controller has been designed for the fast and accurate position control of pneumatic cylinder. The servo positioning system for pneumatic cylinder with the optimal fuzzy controller has been simulated using Matlab-Simulink software. The design of the fuzzy controller has been optimized by proper selection of range for the membership functions of the input variable of the controller. The objectives for optimizing the controller are to minimize the settling time and the maximum overshoot. This multi-objective optimization problem has been solved by Taguchi based data envelopment analysis based ranking methodology. From the simulation, the optimal controller response for a step input change is obtained as settling time 0.16s and overshoot 0.5%.