多项式Levinson-Smith微分方程的达布多项式和可积性

M. Demina
{"title":"多项式Levinson-Smith微分方程的达布多项式和可积性","authors":"M. Demina","doi":"10.1142/s0218127423500359","DOIUrl":null,"url":null,"abstract":"We provide the necessary and sufficient conditions of Liouvillian integrability for nondegenerate near infinity polynomial Levinson–Smith differential equations. These equations generalize Liénard equations and are used to describe self-sustained oscillations. Our results are valid for arbitrary degrees of the polynomials arising in the equations. We find a number of novel Liouvillian integrable subfamilies. We derive an upper bound with respect to one of the variables on the degrees of irreducible Darboux polynomials in the case of nondegenerate or algebraically degenerate near infinity polynomial Levinson–Smith equations. We perform the complete classification of Liouvillian first integrals for the nondegenerate or algebraically degenerate near infinity Rayleigh–Duffing–van der Pol equation that is a cubic Levinson–Smith equation.","PeriodicalId":13688,"journal":{"name":"Int. J. Bifurc. Chaos","volume":"36 1","pages":"2350035:1-2350035:16"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Darboux Polynomials and Integrability of Polynomial Levinson-Smith Differential Equations\",\"authors\":\"M. Demina\",\"doi\":\"10.1142/s0218127423500359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide the necessary and sufficient conditions of Liouvillian integrability for nondegenerate near infinity polynomial Levinson–Smith differential equations. These equations generalize Liénard equations and are used to describe self-sustained oscillations. Our results are valid for arbitrary degrees of the polynomials arising in the equations. We find a number of novel Liouvillian integrable subfamilies. We derive an upper bound with respect to one of the variables on the degrees of irreducible Darboux polynomials in the case of nondegenerate or algebraically degenerate near infinity polynomial Levinson–Smith equations. We perform the complete classification of Liouvillian first integrals for the nondegenerate or algebraically degenerate near infinity Rayleigh–Duffing–van der Pol equation that is a cubic Levinson–Smith equation.\",\"PeriodicalId\":13688,\"journal\":{\"name\":\"Int. J. Bifurc. Chaos\",\"volume\":\"36 1\",\"pages\":\"2350035:1-2350035:16\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Bifurc. Chaos\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218127423500359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Bifurc. Chaos","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218127423500359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给出了非退化近无穷多项式Levinson-Smith微分方程Liouvillian可积性的充分必要条件。这些方程推广了lisamadard方程,并用于描述自持续振荡。我们的结果对方程中出现的多项式的任意次都是有效的。我们发现了一些新的Liouvillian可积亚族。在非简并或代数简并的近无穷多项式Levinson-Smith方程中,我们推导了不可约达布多项式阶上的一个变量的上界。对非简并或代数简并的近无穷Rayleigh-Duffing-van der Pol方程,即三次Levinson-Smith方程,进行了Liouvillian第一积分的完全分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Darboux Polynomials and Integrability of Polynomial Levinson-Smith Differential Equations
We provide the necessary and sufficient conditions of Liouvillian integrability for nondegenerate near infinity polynomial Levinson–Smith differential equations. These equations generalize Liénard equations and are used to describe self-sustained oscillations. Our results are valid for arbitrary degrees of the polynomials arising in the equations. We find a number of novel Liouvillian integrable subfamilies. We derive an upper bound with respect to one of the variables on the degrees of irreducible Darboux polynomials in the case of nondegenerate or algebraically degenerate near infinity polynomial Levinson–Smith equations. We perform the complete classification of Liouvillian first integrals for the nondegenerate or algebraically degenerate near infinity Rayleigh–Duffing–van der Pol equation that is a cubic Levinson–Smith equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信