时滞线性增加的微分-差分系统的稳定性。2具有右侧加性的系统

IF 0.3 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
A. Ekimov, A. P. Zhabko, P. Yakovlev
{"title":"时滞线性增加的微分-差分系统的稳定性。2具有右侧加性的系统","authors":"A. Ekimov, A. P. Zhabko, P. Yakovlev","doi":"10.21638/11701/spbu10.2023.101","DOIUrl":null,"url":null,"abstract":"The article considers an uncontrolled system of differential-difference equations with a homogeneous additive right side and linearly increasing delay. Sufficient conditions for asymptotic stability are known for a number of special cases of such systems. Razumikhin's theorem on the asymptotic stability of homogeneous systems with proportional delay is formulated. Sufficient conditions for asymptotic stability are obtained basing on the asymptotic stability of the initial system without delay and constructing the Lyapunov function.","PeriodicalId":43738,"journal":{"name":"Vestnik Sankt-Peterburgskogo Universiteta Seriya 10 Prikladnaya Matematika Informatika Protsessy Upravleniya","volume":"21 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The stability of differential-difference systems with linearly increasing delay. II. Systems with additive right side\",\"authors\":\"A. Ekimov, A. P. Zhabko, P. Yakovlev\",\"doi\":\"10.21638/11701/spbu10.2023.101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article considers an uncontrolled system of differential-difference equations with a homogeneous additive right side and linearly increasing delay. Sufficient conditions for asymptotic stability are known for a number of special cases of such systems. Razumikhin's theorem on the asymptotic stability of homogeneous systems with proportional delay is formulated. Sufficient conditions for asymptotic stability are obtained basing on the asymptotic stability of the initial system without delay and constructing the Lyapunov function.\",\"PeriodicalId\":43738,\"journal\":{\"name\":\"Vestnik Sankt-Peterburgskogo Universiteta Seriya 10 Prikladnaya Matematika Informatika Protsessy Upravleniya\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vestnik Sankt-Peterburgskogo Universiteta Seriya 10 Prikladnaya Matematika Informatika Protsessy Upravleniya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21638/11701/spbu10.2023.101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik Sankt-Peterburgskogo Universiteta Seriya 10 Prikladnaya Matematika Informatika Protsessy Upravleniya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21638/11701/spbu10.2023.101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

考虑一类不受控制的右侧具有齐次可加性和线性增长时滞的微分-差分方程系统。对于这类系统的一些特殊情况,已知其渐近稳定的充分条件。给出了具有比例时滞齐次系统渐近稳定性的Razumikhin定理。在无时滞初始系统渐近稳定的基础上,构造了Lyapunov函数,得到了渐近稳定的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The stability of differential-difference systems with linearly increasing delay. II. Systems with additive right side
The article considers an uncontrolled system of differential-difference equations with a homogeneous additive right side and linearly increasing delay. Sufficient conditions for asymptotic stability are known for a number of special cases of such systems. Razumikhin's theorem on the asymptotic stability of homogeneous systems with proportional delay is formulated. Sufficient conditions for asymptotic stability are obtained basing on the asymptotic stability of the initial system without delay and constructing the Lyapunov function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
50.00%
发文量
10
期刊介绍: The journal is the prime outlet for the findings of scientists from the Faculty of applied mathematics and control processes of St. Petersburg State University. It publishes original contributions in all areas of applied mathematics, computer science and control. Vestnik St. Petersburg University: Applied Mathematics. Computer Science. Control Processes features articles that cover the major areas of applied mathematics, computer science and control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信