人脸特征检测训练集的自动分割

H. Demirel, T. Clarke, Peter Y. K. Cheung
{"title":"人脸特征检测训练集的自动分割","authors":"H. Demirel, T. Clarke, Peter Y. K. Cheung","doi":"10.1109/ICICS.1997.652127","DOIUrl":null,"url":null,"abstract":"In conventional image-based feature detection a time consuming pre-processing step is required to manually segment the training features from the unsegmented face images. We present a novel method of using automatically segmented facial image data for facial feature detection. A quality measure is defined to identify those image data from a large training set that are better to describe the feature. The best quality subset is then extracted and used to train the feature detector. The detection performance obtained by the automatically segmented data set after refinement is almost as high as that obtained by the feature detector trained by a manually segmented set.","PeriodicalId":71361,"journal":{"name":"信息通信技术","volume":"117 1","pages":"984-988 vol.2"},"PeriodicalIF":0.0000,"publicationDate":"1997-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automatic segmentation of training set for facial feature detection\",\"authors\":\"H. Demirel, T. Clarke, Peter Y. K. Cheung\",\"doi\":\"10.1109/ICICS.1997.652127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In conventional image-based feature detection a time consuming pre-processing step is required to manually segment the training features from the unsegmented face images. We present a novel method of using automatically segmented facial image data for facial feature detection. A quality measure is defined to identify those image data from a large training set that are better to describe the feature. The best quality subset is then extracted and used to train the feature detector. The detection performance obtained by the automatically segmented data set after refinement is almost as high as that obtained by the feature detector trained by a manually segmented set.\",\"PeriodicalId\":71361,\"journal\":{\"name\":\"信息通信技术\",\"volume\":\"117 1\",\"pages\":\"984-988 vol.2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"信息通信技术\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICS.1997.652127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"信息通信技术","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/ICICS.1997.652127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在传统的基于图像的特征检测中,需要一个耗时的预处理步骤来手动从未分割的人脸图像中分割训练特征。提出了一种利用自动分割的人脸图像数据进行人脸特征检测的新方法。定义了一个质量度量来从一个大的训练集中识别那些更好地描述特征的图像数据。然后提取质量最好的子集并用于训练特征检测器。经过细化后的自动分割数据集所获得的检测性能几乎与人工分割集训练的特征检测器所获得的检测性能相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic segmentation of training set for facial feature detection
In conventional image-based feature detection a time consuming pre-processing step is required to manually segment the training features from the unsegmented face images. We present a novel method of using automatically segmented facial image data for facial feature detection. A quality measure is defined to identify those image data from a large training set that are better to describe the feature. The best quality subset is then extracted and used to train the feature detector. The detection performance obtained by the automatically segmented data set after refinement is almost as high as that obtained by the feature detector trained by a manually segmented set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
1369
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信