有限维正则化参数下Tikhonov优化问题解的显式表达

IF 0.3 Q4 MATHEMATICS
A. Chernov
{"title":"有限维正则化参数下Tikhonov优化问题解的显式表达","authors":"A. Chernov","doi":"10.35634/2226-3594-2022-60-06","DOIUrl":null,"url":null,"abstract":"It is well known that using the Tikhonov regularization method for solving operator equations of the first kind one has to minimize a regularized residual functional. The minimizer is determined from so called Euler equation which in finite-dimensional case and at its discretization is written as a one-parametric (depending on the regularization parameter) system of linear algebraic equations of special form. Here, there exist various ways of choosing the regularization parameter. In particular, in the frame of principle of generalized residual, it is necessary to solve the corresponding equation of generalized residual with respect to the regularization parameter. And it implies (when solving this equation numerically), in turn, multifold solving a one-parametric system of linear algebraic equations for arbitrary value of the parameter. In this paper we obtain an explicit simple and effective formula of solution to a one-parametric system for an arbitrary value of the parameter. We give an example of computations by above-mentioned formula and also an example of numerical solution of the Fredholm integral equation of the first kind under usage of this formula which substantiates its effectiveness.","PeriodicalId":42053,"journal":{"name":"Izvestiya Instituta Matematiki i Informatiki-Udmurtskogo Gosudarstvennogo Universiteta","volume":"31 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On explicit expression of the solution to the regularizing by Tikhonov optimization problem in terms of the regularization parameter in the finite-dimensional case\",\"authors\":\"A. Chernov\",\"doi\":\"10.35634/2226-3594-2022-60-06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well known that using the Tikhonov regularization method for solving operator equations of the first kind one has to minimize a regularized residual functional. The minimizer is determined from so called Euler equation which in finite-dimensional case and at its discretization is written as a one-parametric (depending on the regularization parameter) system of linear algebraic equations of special form. Here, there exist various ways of choosing the regularization parameter. In particular, in the frame of principle of generalized residual, it is necessary to solve the corresponding equation of generalized residual with respect to the regularization parameter. And it implies (when solving this equation numerically), in turn, multifold solving a one-parametric system of linear algebraic equations for arbitrary value of the parameter. In this paper we obtain an explicit simple and effective formula of solution to a one-parametric system for an arbitrary value of the parameter. We give an example of computations by above-mentioned formula and also an example of numerical solution of the Fredholm integral equation of the first kind under usage of this formula which substantiates its effectiveness.\",\"PeriodicalId\":42053,\"journal\":{\"name\":\"Izvestiya Instituta Matematiki i Informatiki-Udmurtskogo Gosudarstvennogo Universiteta\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Instituta Matematiki i Informatiki-Udmurtskogo Gosudarstvennogo Universiteta\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35634/2226-3594-2022-60-06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Instituta Matematiki i Informatiki-Udmurtskogo Gosudarstvennogo Universiteta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35634/2226-3594-2022-60-06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,用Tikhonov正则化方法求解第一类算子方程必须最小化正则残差泛函。最小值是由所谓的欧拉方程确定的,在有限维情况下,欧拉方程在其离散化时被写成特殊形式的单参数(取决于正则化参数)线性代数方程组。在这里,存在多种选择正则化参数的方法。特别地,在广义残差原理的框架下,需要求解关于正则化参数的广义残差的相应方程。它意味着(当用数值方法求解这个方程时),反过来,对于任意参数值,多重求解一个单参数线性代数方程组。本文给出了参数为任意值的单参数系统的一个显式的简单有效的解公式。文中给出了用上述公式计算的一个例子和第一类Fredholm积分方程的数值解,证明了该公式的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On explicit expression of the solution to the regularizing by Tikhonov optimization problem in terms of the regularization parameter in the finite-dimensional case
It is well known that using the Tikhonov regularization method for solving operator equations of the first kind one has to minimize a regularized residual functional. The minimizer is determined from so called Euler equation which in finite-dimensional case and at its discretization is written as a one-parametric (depending on the regularization parameter) system of linear algebraic equations of special form. Here, there exist various ways of choosing the regularization parameter. In particular, in the frame of principle of generalized residual, it is necessary to solve the corresponding equation of generalized residual with respect to the regularization parameter. And it implies (when solving this equation numerically), in turn, multifold solving a one-parametric system of linear algebraic equations for arbitrary value of the parameter. In this paper we obtain an explicit simple and effective formula of solution to a one-parametric system for an arbitrary value of the parameter. We give an example of computations by above-mentioned formula and also an example of numerical solution of the Fredholm integral equation of the first kind under usage of this formula which substantiates its effectiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信