{"title":"在生物研究中建立细菌培养标准规程(BRIC)硬件","authors":"P. Fajardo-Cavazos, W. Nicholson","doi":"10.2478/gsr-2016-0013","DOIUrl":null,"url":null,"abstract":"Abstract The NASA GeneLab Data System (GLDS) was recently developed to facilitate cross-experiment comparisons in order to understand the response of microorganisms to the human spaceflight environment. However, prior spaceflight experiments have been conducted using a wide variety of different hardware, media, culture conditions, and procedures. Such confounding factors could potentially mask true differences in gene expression between spaceflight and ground control samples. In an attempt to mitigate such confounding factors, we describe here the development of a standardized set of hardware, media, and protocols for liquid cultivation of microbes in Biological Research in Canisters (BRIC) spaceflight hardware, using the model bacteria Bacillus subtilis strain 168 and Staphylococcus aureus strain UAMS-1 as examples.","PeriodicalId":90510,"journal":{"name":"Gravitational and space research : publication of the American Society for Gravitational and Space Research","volume":"2015 1","pages":"58 - 69"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Establishing Standard Protocols for Bacterial Culture in Biological Research in Canisters (BRIC) Hardware\",\"authors\":\"P. Fajardo-Cavazos, W. Nicholson\",\"doi\":\"10.2478/gsr-2016-0013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The NASA GeneLab Data System (GLDS) was recently developed to facilitate cross-experiment comparisons in order to understand the response of microorganisms to the human spaceflight environment. However, prior spaceflight experiments have been conducted using a wide variety of different hardware, media, culture conditions, and procedures. Such confounding factors could potentially mask true differences in gene expression between spaceflight and ground control samples. In an attempt to mitigate such confounding factors, we describe here the development of a standardized set of hardware, media, and protocols for liquid cultivation of microbes in Biological Research in Canisters (BRIC) spaceflight hardware, using the model bacteria Bacillus subtilis strain 168 and Staphylococcus aureus strain UAMS-1 as examples.\",\"PeriodicalId\":90510,\"journal\":{\"name\":\"Gravitational and space research : publication of the American Society for Gravitational and Space Research\",\"volume\":\"2015 1\",\"pages\":\"58 - 69\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gravitational and space research : publication of the American Society for Gravitational and Space Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/gsr-2016-0013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gravitational and space research : publication of the American Society for Gravitational and Space Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/gsr-2016-0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Establishing Standard Protocols for Bacterial Culture in Biological Research in Canisters (BRIC) Hardware
Abstract The NASA GeneLab Data System (GLDS) was recently developed to facilitate cross-experiment comparisons in order to understand the response of microorganisms to the human spaceflight environment. However, prior spaceflight experiments have been conducted using a wide variety of different hardware, media, culture conditions, and procedures. Such confounding factors could potentially mask true differences in gene expression between spaceflight and ground control samples. In an attempt to mitigate such confounding factors, we describe here the development of a standardized set of hardware, media, and protocols for liquid cultivation of microbes in Biological Research in Canisters (BRIC) spaceflight hardware, using the model bacteria Bacillus subtilis strain 168 and Staphylococcus aureus strain UAMS-1 as examples.