{"title":"渗碳SAE4320钢回火马氏体和残余奥氏体轧制接触过程中的碳迁移行为","authors":"K. Kanetani, K. Ushioda","doi":"10.2355/tetsutohagane.tetsu-2021-073","DOIUrl":null,"url":null,"abstract":": The changes in the state of carbon in tempered martensite and retained austenite in carburized SAE4320 steel under the rolling contact fatigue (RCF) were investigated using atom probe tomography (APT). In the tempered martensite, the carbons in solid solution and in carbon cluster were readily transferred to the preexisting metastable ( ε ) carbide due to rolling contact, resulting in a localized change from tempered martensite to ferrite accompanied by the growth of carbides. This supports the recently proposed dislocation assisted carbon migration theory. On the other hand, retained austenite with uniformly dis-tributed enriched solute carbon was partially transformed into the very fine deformation-induced martensite due to rolling contact. Furthermore, carbon seemed to be partitioned into retained austenite from the deformation-induced martensite during further rolling contact cycles. This is a new insight into the characteristics of deformation-induced martensite and retained austenite generated by rolling contact. The present study provides a plausible explanation to the phenomenon that the deformation-induced martensitic transformation improves the RCF life.","PeriodicalId":22340,"journal":{"name":"Tetsu To Hagane-journal of The Iron and Steel Institute of Japan","volume":"159 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbon Migration Behavior during Rolling Contact in Tempered Martensite and Retained Austenite of Carburized SAE4320 Steel\",\"authors\":\"K. Kanetani, K. Ushioda\",\"doi\":\"10.2355/tetsutohagane.tetsu-2021-073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": The changes in the state of carbon in tempered martensite and retained austenite in carburized SAE4320 steel under the rolling contact fatigue (RCF) were investigated using atom probe tomography (APT). In the tempered martensite, the carbons in solid solution and in carbon cluster were readily transferred to the preexisting metastable ( ε ) carbide due to rolling contact, resulting in a localized change from tempered martensite to ferrite accompanied by the growth of carbides. This supports the recently proposed dislocation assisted carbon migration theory. On the other hand, retained austenite with uniformly dis-tributed enriched solute carbon was partially transformed into the very fine deformation-induced martensite due to rolling contact. Furthermore, carbon seemed to be partitioned into retained austenite from the deformation-induced martensite during further rolling contact cycles. This is a new insight into the characteristics of deformation-induced martensite and retained austenite generated by rolling contact. The present study provides a plausible explanation to the phenomenon that the deformation-induced martensitic transformation improves the RCF life.\",\"PeriodicalId\":22340,\"journal\":{\"name\":\"Tetsu To Hagane-journal of The Iron and Steel Institute of Japan\",\"volume\":\"159 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tetsu To Hagane-journal of The Iron and Steel Institute of Japan\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2355/tetsutohagane.tetsu-2021-073\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tetsu To Hagane-journal of The Iron and Steel Institute of Japan","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2355/tetsutohagane.tetsu-2021-073","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Carbon Migration Behavior during Rolling Contact in Tempered Martensite and Retained Austenite of Carburized SAE4320 Steel
: The changes in the state of carbon in tempered martensite and retained austenite in carburized SAE4320 steel under the rolling contact fatigue (RCF) were investigated using atom probe tomography (APT). In the tempered martensite, the carbons in solid solution and in carbon cluster were readily transferred to the preexisting metastable ( ε ) carbide due to rolling contact, resulting in a localized change from tempered martensite to ferrite accompanied by the growth of carbides. This supports the recently proposed dislocation assisted carbon migration theory. On the other hand, retained austenite with uniformly dis-tributed enriched solute carbon was partially transformed into the very fine deformation-induced martensite due to rolling contact. Furthermore, carbon seemed to be partitioned into retained austenite from the deformation-induced martensite during further rolling contact cycles. This is a new insight into the characteristics of deformation-induced martensite and retained austenite generated by rolling contact. The present study provides a plausible explanation to the phenomenon that the deformation-induced martensitic transformation improves the RCF life.
期刊介绍:
The journal ISIJ International first appeared in 1961 under the title Tetsu-to-Hagané Overseas. The title was changed in 1966 to Transactions of The Iron and Steel Institute of Japan and again in 1989 to the current ISIJ International.
The journal provides an international medium for the publication of fundamental and technological aspects of the properties, structure, characterization and modeling, processing, fabrication, and environmental issues of iron and steel, along with related engineering materials.
Classification
I Fundamentals of High Temperature Processes
II Ironmaking
III Steelmaking
IV Casting and Solidification
V Instrumentation, Control, and System Engineering
VI Chemical and Physical Analysis
VII Forming Processing and Thermomechanical Treatment
VIII Welding and Joining
IX Surface Treatment and Corrosion
X Transformations and Microstructures
XI Mechanical Properties
XII Physical Properties
XIII New Materials and Processes
XIV Social and Environmental Engineering.