Elisabet Lobo Vesga, Alejandro Russo, Marco Gaboardi
{"title":"一种具有准确度集中界限的差分隐私规划框架","authors":"Elisabet Lobo Vesga, Alejandro Russo, Marco Gaboardi","doi":"10.1109/SP40000.2020.00086","DOIUrl":null,"url":null,"abstract":"Differential privacy offers a formal framework for reasoning about privacy and accuracy of computations on private data. It also offers a rich set of building blocks for constructing private data analyses. When carefully calibrated, these analyses simultaneously guarantee the privacy of the individuals contributing their data, and the accuracy of the data analyses results, inferring useful properties about the population. The compositional nature of differential privacy has motivated the design and implementation of several programming languages aimed at helping a data analyst in programming differentially private analyses. However, most of the programming languages for differential privacy proposed so far provide support for reasoning about privacy but not for reasoning about the accuracy of data analyses. To overcome this limitation, in this work we present DPella, a programming framework providing data analysts with support for reasoning about privacy, accuracy and their trade-offs. The distinguishing feature of DPella is a novel component which statically tracks the accuracy of different data analyses. In order to make tighter accuracy estimations, this component leverages taint analysis for automatically inferring statistical independence of the different noise quantities added for guaranteeing privacy. We evaluate our approach by implementing several classical queries from the literature and showing how data analysts can figure out the best manner to calibrate privacy to meet the accuracy requirements.","PeriodicalId":6849,"journal":{"name":"2020 IEEE Symposium on Security and Privacy (SP)","volume":"68 1","pages":"411-428"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"A Programming Framework for Differential Privacy with Accuracy Concentration Bounds\",\"authors\":\"Elisabet Lobo Vesga, Alejandro Russo, Marco Gaboardi\",\"doi\":\"10.1109/SP40000.2020.00086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Differential privacy offers a formal framework for reasoning about privacy and accuracy of computations on private data. It also offers a rich set of building blocks for constructing private data analyses. When carefully calibrated, these analyses simultaneously guarantee the privacy of the individuals contributing their data, and the accuracy of the data analyses results, inferring useful properties about the population. The compositional nature of differential privacy has motivated the design and implementation of several programming languages aimed at helping a data analyst in programming differentially private analyses. However, most of the programming languages for differential privacy proposed so far provide support for reasoning about privacy but not for reasoning about the accuracy of data analyses. To overcome this limitation, in this work we present DPella, a programming framework providing data analysts with support for reasoning about privacy, accuracy and their trade-offs. The distinguishing feature of DPella is a novel component which statically tracks the accuracy of different data analyses. In order to make tighter accuracy estimations, this component leverages taint analysis for automatically inferring statistical independence of the different noise quantities added for guaranteeing privacy. We evaluate our approach by implementing several classical queries from the literature and showing how data analysts can figure out the best manner to calibrate privacy to meet the accuracy requirements.\",\"PeriodicalId\":6849,\"journal\":{\"name\":\"2020 IEEE Symposium on Security and Privacy (SP)\",\"volume\":\"68 1\",\"pages\":\"411-428\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Symposium on Security and Privacy (SP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SP40000.2020.00086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium on Security and Privacy (SP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SP40000.2020.00086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Programming Framework for Differential Privacy with Accuracy Concentration Bounds
Differential privacy offers a formal framework for reasoning about privacy and accuracy of computations on private data. It also offers a rich set of building blocks for constructing private data analyses. When carefully calibrated, these analyses simultaneously guarantee the privacy of the individuals contributing their data, and the accuracy of the data analyses results, inferring useful properties about the population. The compositional nature of differential privacy has motivated the design and implementation of several programming languages aimed at helping a data analyst in programming differentially private analyses. However, most of the programming languages for differential privacy proposed so far provide support for reasoning about privacy but not for reasoning about the accuracy of data analyses. To overcome this limitation, in this work we present DPella, a programming framework providing data analysts with support for reasoning about privacy, accuracy and their trade-offs. The distinguishing feature of DPella is a novel component which statically tracks the accuracy of different data analyses. In order to make tighter accuracy estimations, this component leverages taint analysis for automatically inferring statistical independence of the different noise quantities added for guaranteeing privacy. We evaluate our approach by implementing several classical queries from the literature and showing how data analysts can figure out the best manner to calibrate privacy to meet the accuracy requirements.