实值NARX神经网络用于多标准射频功率放大器行为建模能力的实验研究

L. Aguilar-Lobo, J. R. Loo-Yau, S. Ortega-Cisneros, P. Moreno, J. Reynoso‐Hernández
{"title":"实值NARX神经网络用于多标准射频功率放大器行为建模能力的实验研究","authors":"L. Aguilar-Lobo, J. R. Loo-Yau, S. Ortega-Cisneros, P. Moreno, J. Reynoso‐Hernández","doi":"10.1109/MWSYM.2015.7166978","DOIUrl":null,"url":null,"abstract":"This paper evaluates the capability of a Real-Valued Nonlinear Autoregressive with exogenous Input Neural Network (RVNARXNN) to model the nonlinear behavior of multi-standard RF Power Amplifiers (PAs). The RVNARXNN is a recurrent neural network that can be trained in feedforward mode and take the advantage of real-valued representation to reduce the complexity when complex signal are used. The RVNARXNN is a neural network with good generalization performance and fast convergence, thus it is suitable for dynamic modeling of the nonlinear behavior of RF PAs with memory. The validation of the behavioral modeling with RVNARXNN is realized with a commercial PA excited with multi-standard signals as GSM, WCDMA and LTE. The results are very satisfactory and suggest the possibility of using this type of neural network for the development of a digital pre-distortion technique for multi-standard power amplifiers.","PeriodicalId":6493,"journal":{"name":"2015 IEEE MTT-S International Microwave Symposium","volume":"52 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Experimental study of the capabilities of the Real-Valued NARX neural network for behavioral modeling of multi-standard RF power amplifier\",\"authors\":\"L. Aguilar-Lobo, J. R. Loo-Yau, S. Ortega-Cisneros, P. Moreno, J. Reynoso‐Hernández\",\"doi\":\"10.1109/MWSYM.2015.7166978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper evaluates the capability of a Real-Valued Nonlinear Autoregressive with exogenous Input Neural Network (RVNARXNN) to model the nonlinear behavior of multi-standard RF Power Amplifiers (PAs). The RVNARXNN is a recurrent neural network that can be trained in feedforward mode and take the advantage of real-valued representation to reduce the complexity when complex signal are used. The RVNARXNN is a neural network with good generalization performance and fast convergence, thus it is suitable for dynamic modeling of the nonlinear behavior of RF PAs with memory. The validation of the behavioral modeling with RVNARXNN is realized with a commercial PA excited with multi-standard signals as GSM, WCDMA and LTE. The results are very satisfactory and suggest the possibility of using this type of neural network for the development of a digital pre-distortion technique for multi-standard power amplifiers.\",\"PeriodicalId\":6493,\"journal\":{\"name\":\"2015 IEEE MTT-S International Microwave Symposium\",\"volume\":\"52 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE MTT-S International Microwave Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSYM.2015.7166978\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE MTT-S International Microwave Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2015.7166978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文评估了一种带外生输入的实值非线性自回归神经网络(RVNARXNN)对多标准射频功率放大器(PAs)非线性行为建模的能力。RVNARXNN是一种循环神经网络,可以采用前馈方式进行训练,并利用实值表示来降低复杂信号处理的复杂度。RVNARXNN是一种泛化性能好、收敛速度快的神经网络,适用于有记忆射频放大器非线性行为的动态建模。利用GSM、WCDMA和LTE等多标准信号激励的商用PA实现了RVNARXNN行为建模的验证。结果非常令人满意,并表明了将这种类型的神经网络用于开发多标准功率放大器的数字预失真技术的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental study of the capabilities of the Real-Valued NARX neural network for behavioral modeling of multi-standard RF power amplifier
This paper evaluates the capability of a Real-Valued Nonlinear Autoregressive with exogenous Input Neural Network (RVNARXNN) to model the nonlinear behavior of multi-standard RF Power Amplifiers (PAs). The RVNARXNN is a recurrent neural network that can be trained in feedforward mode and take the advantage of real-valued representation to reduce the complexity when complex signal are used. The RVNARXNN is a neural network with good generalization performance and fast convergence, thus it is suitable for dynamic modeling of the nonlinear behavior of RF PAs with memory. The validation of the behavioral modeling with RVNARXNN is realized with a commercial PA excited with multi-standard signals as GSM, WCDMA and LTE. The results are very satisfactory and suggest the possibility of using this type of neural network for the development of a digital pre-distortion technique for multi-standard power amplifiers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信