从帕累托最优解中自动发现重要知识:工程设计的第一个结果

Sunith Bandaru, K. Deb
{"title":"从帕累托最优解中自动发现重要知识:工程设计的第一个结果","authors":"Sunith Bandaru, K. Deb","doi":"10.1109/CEC.2010.5586501","DOIUrl":null,"url":null,"abstract":"Real world multi-objective optimization problems are often solved with the only intention of selecting a single trade-off solution by taking up a decision-making task. The computational effort and time spent on obtaining the entire Pareto front is thus not justifiable. The Pareto solutions as a whole contain within them a lot more information than that is used. Extracting this knowledge would not only give designers a better understanding of the system, but also bring worth to the resources spent. The obtained knowledge acts as governing principles which can help solve other similar systems easily. We propose a genetic algorithm based unsupervised approach for learning these principles from the Pareto-optimal dataset of the base problem. The methodology is capable of discovering analytical relationships of a certain type between different problem entities.","PeriodicalId":6344,"journal":{"name":"2009 IEEE Congress on Evolutionary Computation","volume":"35 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Automated discovery of vital knowledge from Pareto-optimal solutions: First results from engineering design\",\"authors\":\"Sunith Bandaru, K. Deb\",\"doi\":\"10.1109/CEC.2010.5586501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real world multi-objective optimization problems are often solved with the only intention of selecting a single trade-off solution by taking up a decision-making task. The computational effort and time spent on obtaining the entire Pareto front is thus not justifiable. The Pareto solutions as a whole contain within them a lot more information than that is used. Extracting this knowledge would not only give designers a better understanding of the system, but also bring worth to the resources spent. The obtained knowledge acts as governing principles which can help solve other similar systems easily. We propose a genetic algorithm based unsupervised approach for learning these principles from the Pareto-optimal dataset of the base problem. The methodology is capable of discovering analytical relationships of a certain type between different problem entities.\",\"PeriodicalId\":6344,\"journal\":{\"name\":\"2009 IEEE Congress on Evolutionary Computation\",\"volume\":\"35 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Congress on Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2010.5586501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2010.5586501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

在现实世界中,多目标优化问题的唯一目的往往是通过承担决策任务来选择一个权衡解决方案。因此,花费在获得整个帕累托前沿上的计算努力和时间是不合理的。帕累托解作为一个整体包含了比实际使用的更多的信息。提取这些知识不仅可以让设计师更好地理解系统,还可以为所花费的资源带来价值。获得的知识作为指导原则,可以帮助解决其他类似的系统很容易。我们提出了一种基于遗传算法的无监督方法,从基本问题的帕累托最优数据集中学习这些原则。该方法能够发现不同问题实体之间某种类型的分析关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated discovery of vital knowledge from Pareto-optimal solutions: First results from engineering design
Real world multi-objective optimization problems are often solved with the only intention of selecting a single trade-off solution by taking up a decision-making task. The computational effort and time spent on obtaining the entire Pareto front is thus not justifiable. The Pareto solutions as a whole contain within them a lot more information than that is used. Extracting this knowledge would not only give designers a better understanding of the system, but also bring worth to the resources spent. The obtained knowledge acts as governing principles which can help solve other similar systems easily. We propose a genetic algorithm based unsupervised approach for learning these principles from the Pareto-optimal dataset of the base problem. The methodology is capable of discovering analytical relationships of a certain type between different problem entities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信