正则变分框架下广义Emden-Fowler微分方程正解的渐近分析

J. Jaros, K. Takaši, J. Manojlovic
{"title":"正则变分框架下广义Emden-Fowler微分方程正解的渐近分析","authors":"J. Jaros, K. Takaši, J. Manojlovic","doi":"10.2478/s11533-013-0306-9","DOIUrl":null,"url":null,"abstract":"Positive solutions of the nonlinear second-order differential equation $(p(t)|x'|^{\\alpha - 1} x')' + q(t)|x|^{\\beta - 1} x = 0,\\alpha > \\beta > 0,$ are studied under the assumption that p, q are generalized regularly varying functions. An application of the theory of regular variation gives the possibility of obtaining necessary and sufficient conditions for existence of three possible types of intermediate solutions, together with the precise information about asymptotic behavior at infinity of all solutions belonging to each type of solution classes.","PeriodicalId":50988,"journal":{"name":"Central European Journal of Mathematics","volume":"23 1","pages":"2215-2233"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Asymptotic analysis of positive solutions of generalized Emden-Fowler differential equations in the framework of regular variation\",\"authors\":\"J. Jaros, K. Takaši, J. Manojlovic\",\"doi\":\"10.2478/s11533-013-0306-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Positive solutions of the nonlinear second-order differential equation $(p(t)|x'|^{\\\\alpha - 1} x')' + q(t)|x|^{\\\\beta - 1} x = 0,\\\\alpha > \\\\beta > 0,$ are studied under the assumption that p, q are generalized regularly varying functions. An application of the theory of regular variation gives the possibility of obtaining necessary and sufficient conditions for existence of three possible types of intermediate solutions, together with the precise information about asymptotic behavior at infinity of all solutions belonging to each type of solution classes.\",\"PeriodicalId\":50988,\"journal\":{\"name\":\"Central European Journal of Mathematics\",\"volume\":\"23 1\",\"pages\":\"2215-2233\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Central European Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/s11533-013-0306-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/s11533-013-0306-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

在p、q为广义正则变函数的假设下,研究了非线性二阶微分方程$(p(t)|x'|^{\alpha - 1} x')' + q(t)|x|^{\beta - 1} x = 0,\alpha > \beta > 0,$的正解。应用正则变分理论,给出了三种可能类型的中间解存在的充分必要条件,以及每一类解类的所有解在无穷远处渐近行为的精确信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic analysis of positive solutions of generalized Emden-Fowler differential equations in the framework of regular variation
Positive solutions of the nonlinear second-order differential equation $(p(t)|x'|^{\alpha - 1} x')' + q(t)|x|^{\beta - 1} x = 0,\alpha > \beta > 0,$ are studied under the assumption that p, q are generalized regularly varying functions. An application of the theory of regular variation gives the possibility of obtaining necessary and sufficient conditions for existence of three possible types of intermediate solutions, together with the precise information about asymptotic behavior at infinity of all solutions belonging to each type of solution classes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
3-8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信