与仿射子空间族相关的furstenberg型集的Hausdorff维数

IF 0.9 4区 数学 Q2 Mathematics
K. H'era
{"title":"与仿射子空间族相关的furstenberg型集的Hausdorff维数","authors":"K. H'era","doi":"10.5186/AASFM.2019.4469","DOIUrl":null,"url":null,"abstract":"We show that if $B \\subset \\mathbb{R}^n$ and $E \\subset A(n,k)$ is a nonempty collection of $k$-dimensional affine subspaces of $\\mathbb{R}^n$ such that every $P \\in E$ intersects $B$ in a set of Hausdorff dimension at least $\\alpha$ with $k-1 < \\alpha \\leq k$, then $\\dim B \\geq \\alpha +\\dim E/(k+1)$, where $\\dim$ denotes the Hausdorff dimension. This estimate generalizes the well known Furstenberg-type estimate that every $\\alpha$-Furstenberg set in the plane has Hausdorff dimension at least $\\alpha + 1/2$. \r\nMore generally, we prove that if $B$ and $E$ are as above with $0 < \\alpha \\leq k$, then $\\dim B \\geq \\alpha +(\\dim E-(k-\\lceil \\alpha \\rceil)(n-k))/(\\lceil \\alpha \\rceil+1)$. We also show that this bound is sharp for some parameters. \r\nAs a consequence, we prove that for any $1 \\leq k<n$, the union of any nonempty $s$-Hausdorff dimensional family of $k$-dimensional affine subspaces of $\\mathbb{R}^n$ has Hausdorff dimension at least $k+\\frac{s}{k+1}$.","PeriodicalId":50787,"journal":{"name":"Annales Academiae Scientiarum Fennicae-Mathematica","volume":"71 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2018-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Hausdorff dimension of Furstenberg-type sets associated to families of affine subspaces\",\"authors\":\"K. H'era\",\"doi\":\"10.5186/AASFM.2019.4469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that if $B \\\\subset \\\\mathbb{R}^n$ and $E \\\\subset A(n,k)$ is a nonempty collection of $k$-dimensional affine subspaces of $\\\\mathbb{R}^n$ such that every $P \\\\in E$ intersects $B$ in a set of Hausdorff dimension at least $\\\\alpha$ with $k-1 < \\\\alpha \\\\leq k$, then $\\\\dim B \\\\geq \\\\alpha +\\\\dim E/(k+1)$, where $\\\\dim$ denotes the Hausdorff dimension. This estimate generalizes the well known Furstenberg-type estimate that every $\\\\alpha$-Furstenberg set in the plane has Hausdorff dimension at least $\\\\alpha + 1/2$. \\r\\nMore generally, we prove that if $B$ and $E$ are as above with $0 < \\\\alpha \\\\leq k$, then $\\\\dim B \\\\geq \\\\alpha +(\\\\dim E-(k-\\\\lceil \\\\alpha \\\\rceil)(n-k))/(\\\\lceil \\\\alpha \\\\rceil+1)$. We also show that this bound is sharp for some parameters. \\r\\nAs a consequence, we prove that for any $1 \\\\leq k<n$, the union of any nonempty $s$-Hausdorff dimensional family of $k$-dimensional affine subspaces of $\\\\mathbb{R}^n$ has Hausdorff dimension at least $k+\\\\frac{s}{k+1}$.\",\"PeriodicalId\":50787,\"journal\":{\"name\":\"Annales Academiae Scientiarum Fennicae-Mathematica\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2018-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Academiae Scientiarum Fennicae-Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5186/AASFM.2019.4469\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Academiae Scientiarum Fennicae-Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5186/AASFM.2019.4469","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 18

摘要

我们证明了如果$B \subset \mathbb{R}^n$和$E \subset A(n,k)$是$\mathbb{R}^n$的$k$的仿射子空间的非空集合,使得每一个$P \in E$都与$B$在至少$\alpha$与$k-1 < \alpha \leq k$的Hausdorff维数集合中相交,则$\dim B \geq \alpha +\dim E/(k+1)$,其中$\dim$表示Hausdorff维数。这个估计推广了众所周知的furstenberg型估计,即平面上的每个$\alpha$ -Furstenberg集至少具有$\alpha + 1/2$的Hausdorff维数。更一般地,我们证明如果$B$和$E$与$0 < \alpha \leq k$相同,则$\dim B \geq \alpha +(\dim E-(k-\lceil \alpha \rceil)(n-k))/(\lceil \alpha \rceil+1)$。我们还证明了这个界对于某些参数是尖锐的。由此证明了对于任意$1 \leq k本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
Hausdorff dimension of Furstenberg-type sets associated to families of affine subspaces
We show that if $B \subset \mathbb{R}^n$ and $E \subset A(n,k)$ is a nonempty collection of $k$-dimensional affine subspaces of $\mathbb{R}^n$ such that every $P \in E$ intersects $B$ in a set of Hausdorff dimension at least $\alpha$ with $k-1 < \alpha \leq k$, then $\dim B \geq \alpha +\dim E/(k+1)$, where $\dim$ denotes the Hausdorff dimension. This estimate generalizes the well known Furstenberg-type estimate that every $\alpha$-Furstenberg set in the plane has Hausdorff dimension at least $\alpha + 1/2$. More generally, we prove that if $B$ and $E$ are as above with $0 < \alpha \leq k$, then $\dim B \geq \alpha +(\dim E-(k-\lceil \alpha \rceil)(n-k))/(\lceil \alpha \rceil+1)$. We also show that this bound is sharp for some parameters. As a consequence, we prove that for any $1 \leq k
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Annales Academiæ Scientiarum Fennicæ Mathematica is published by Academia Scientiarum Fennica since 1941. It was founded and edited, until 1974, by P.J. Myrberg. Its editor is Olli Martio. AASF publishes refereed papers in all fields of mathematics with emphasis on analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信