不可压缩流正则化模型的能量、动量和角动量守恒方案

IF 3.8 2区 数学 Q1 MATHEMATICS
Sean Ingimarson
{"title":"不可压缩流正则化模型的能量、动量和角动量守恒方案","authors":"Sean Ingimarson","doi":"10.1515/jnma-2020-0080","DOIUrl":null,"url":null,"abstract":"Abstract We introduce a new regularization model for incompressible fluid flow, which is a regularization of the EMAC (energy, momentum, and angular momentum conserving) formulation of the Navier–Stokes equations (NSE) that we call EMAC-Reg. The EMAC formulation has proved to be a useful formulation because it conserves energy, momentum, and angular momentum even when the divergence constraint is only weakly enforced. However, it is still a NSE formulation and so cannot resolve higher Reynolds number flows without very fine meshes. By carefully introducing regularization into the EMAC formulation, we create a model more suitable for coarser mesh computations but that still conserves the same quantities as EMAC, i.e., energy, momentum, and angular momentum. We show that EMAC-Reg, when semi-discretized with a finite element spatial discretization is well-posed and optimally accurate. Numerical results are provided that show EMAC-Reg is a robust coarse mesh model.","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":"70 1","pages":"1 - 22"},"PeriodicalIF":3.8000,"publicationDate":"2020-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An energy, momentum, and angular momentum conserving scheme for a regularization model of incompressible flow\",\"authors\":\"Sean Ingimarson\",\"doi\":\"10.1515/jnma-2020-0080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We introduce a new regularization model for incompressible fluid flow, which is a regularization of the EMAC (energy, momentum, and angular momentum conserving) formulation of the Navier–Stokes equations (NSE) that we call EMAC-Reg. The EMAC formulation has proved to be a useful formulation because it conserves energy, momentum, and angular momentum even when the divergence constraint is only weakly enforced. However, it is still a NSE formulation and so cannot resolve higher Reynolds number flows without very fine meshes. By carefully introducing regularization into the EMAC formulation, we create a model more suitable for coarser mesh computations but that still conserves the same quantities as EMAC, i.e., energy, momentum, and angular momentum. We show that EMAC-Reg, when semi-discretized with a finite element spatial discretization is well-posed and optimally accurate. Numerical results are provided that show EMAC-Reg is a robust coarse mesh model.\",\"PeriodicalId\":50109,\"journal\":{\"name\":\"Journal of Numerical Mathematics\",\"volume\":\"70 1\",\"pages\":\"1 - 22\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2020-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jnma-2020-0080\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jnma-2020-0080","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

摘要本文引入了一种新的不可压缩流体流动正则化模型,它是Navier-Stokes方程(NSE)的EMAC(能量、动量和角动量守恒)公式的正则化,我们称之为EMAC- reg。EMAC公式已被证明是一个有用的公式,因为即使散度约束只是弱执行,它也能保存能量、动量和角动量。然而,它仍然是一个NSE公式,因此如果没有非常精细的网格,就无法解决更高雷诺数的流动。通过仔细地将正则化引入EMAC公式,我们创建了一个更适合于粗网格计算的模型,但仍然保留了与EMAC相同的量,即能量,动量和角动量。我们证明了EMAC-Reg在用有限元空间离散化半离散时是适定的和最优精度的。数值结果表明,EMAC-Reg是一种鲁棒的粗网格模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An energy, momentum, and angular momentum conserving scheme for a regularization model of incompressible flow
Abstract We introduce a new regularization model for incompressible fluid flow, which is a regularization of the EMAC (energy, momentum, and angular momentum conserving) formulation of the Navier–Stokes equations (NSE) that we call EMAC-Reg. The EMAC formulation has proved to be a useful formulation because it conserves energy, momentum, and angular momentum even when the divergence constraint is only weakly enforced. However, it is still a NSE formulation and so cannot resolve higher Reynolds number flows without very fine meshes. By carefully introducing regularization into the EMAC formulation, we create a model more suitable for coarser mesh computations but that still conserves the same quantities as EMAC, i.e., energy, momentum, and angular momentum. We show that EMAC-Reg, when semi-discretized with a finite element spatial discretization is well-posed and optimally accurate. Numerical results are provided that show EMAC-Reg is a robust coarse mesh model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
3.30%
发文量
17
审稿时长
>12 weeks
期刊介绍: The Journal of Numerical Mathematics (formerly East-West Journal of Numerical Mathematics) contains high-quality papers featuring contemporary research in all areas of Numerical Mathematics. This includes the development, analysis, and implementation of new and innovative methods in Numerical Linear Algebra, Numerical Analysis, Optimal Control/Optimization, and Scientific Computing. The journal will also publish applications-oriented papers with significant mathematical content in computational fluid dynamics and other areas of computational engineering, finance, and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信