采用内热交换器的R1234yf汽车空调系统的实验性能评价

Umut Güngör, Murat Hoşöz
{"title":"采用内热交换器的R1234yf汽车空调系统的实验性能评价","authors":"Umut Güngör, Murat Hoşöz","doi":"10.18245/IJAET.842426","DOIUrl":null,"url":null,"abstract":"A bench-top automobile air conditioning (AAC) system using a thermostatic expansion valve was developed. The system was equipped with a coaxial internal heat exchanger (HEX) and charged with R1234yf, a new refrigerant used as an alternative to R134a. The system was tested at the compressor speeds ranging between 1000 rpm and 2600 rpm with increments of 400 rpm. For each compressor speed, the air temperatures at the evaporator and condenser inlets were concurrently changed between 30 °C and 40 °C with increments of 5 °C. The system was operated for the cases of employing and not employing the HEX, and totally 30 test runs were performed. Then, the first law of thermodynamics was applied to the system components to evaluate various steady state performance parameters. The considered parameters were the refrigerant mass flow rate, evaporating temperature, cooling capacity, compressor power, coefficient of performance (COP), condenser heat dissipation rate and discharge temperature of the compressor. It was determined that the experimental system employing the HEX yielded on average 0.8 °C lower evaporating temperature, 2.2% higher cooling capacity, 2.0% lower compressor power and 3.0% higher COP values relative to the system not employing the HEX. These findings reveal that the use of HEX causes a better system performance in terms of the cooling capacity, compressor power and COP. Consequently, the performance of R1234yf AAC systems can be improved with the use of HEX, and thus, the AAC systems using R1234yf can be more competitive with those using R134a.","PeriodicalId":13841,"journal":{"name":"International Journal of Automotive Engineering and Technologies","volume":"14 1","pages":"50-59"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Experimental performance evaluation of an R1234yf automobile air conditioning system employing an internal heat exchanger\",\"authors\":\"Umut Güngör, Murat Hoşöz\",\"doi\":\"10.18245/IJAET.842426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A bench-top automobile air conditioning (AAC) system using a thermostatic expansion valve was developed. The system was equipped with a coaxial internal heat exchanger (HEX) and charged with R1234yf, a new refrigerant used as an alternative to R134a. The system was tested at the compressor speeds ranging between 1000 rpm and 2600 rpm with increments of 400 rpm. For each compressor speed, the air temperatures at the evaporator and condenser inlets were concurrently changed between 30 °C and 40 °C with increments of 5 °C. The system was operated for the cases of employing and not employing the HEX, and totally 30 test runs were performed. Then, the first law of thermodynamics was applied to the system components to evaluate various steady state performance parameters. The considered parameters were the refrigerant mass flow rate, evaporating temperature, cooling capacity, compressor power, coefficient of performance (COP), condenser heat dissipation rate and discharge temperature of the compressor. It was determined that the experimental system employing the HEX yielded on average 0.8 °C lower evaporating temperature, 2.2% higher cooling capacity, 2.0% lower compressor power and 3.0% higher COP values relative to the system not employing the HEX. These findings reveal that the use of HEX causes a better system performance in terms of the cooling capacity, compressor power and COP. Consequently, the performance of R1234yf AAC systems can be improved with the use of HEX, and thus, the AAC systems using R1234yf can be more competitive with those using R134a.\",\"PeriodicalId\":13841,\"journal\":{\"name\":\"International Journal of Automotive Engineering and Technologies\",\"volume\":\"14 1\",\"pages\":\"50-59\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automotive Engineering and Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18245/IJAET.842426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive Engineering and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18245/IJAET.842426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

研制了一种采用恒温膨胀阀的台式汽车空调系统。该系统配备了同轴内部热交换器(HEX),并充注了R1234yf,这是一种用于替代R134a的新制冷剂。该系统在压缩机转速范围为1000转/分钟至2600转/分钟,增量为400转/分钟的情况下进行了测试。对于每一个压缩机转速,蒸发器和冷凝器入口的空气温度同时在30°C和40°C之间变化,增量为5°C。该系统在使用HEX和不使用HEX两种情况下进行了运行,共进行了30次试运行。然后,将热力学第一定律应用于系统部件,对各稳态性能参数进行了评价。考虑的参数包括制冷剂质量流量、蒸发温度、制冷量、压缩机功率、性能系数(COP)、冷凝器散热率和压缩机排气温度。实验结果表明,与不采用HEX的系统相比,采用HEX的实验系统的蒸发温度平均降低0.8°C,制冷量提高2.2%,压缩机功率降低2.0%,COP值提高3.0%。这些结果表明,使用HEX可以在制冷量、压缩机功率和COP方面获得更好的系统性能。因此,使用HEX可以提高R1234yf AAC系统的性能,因此,使用R1234yf的AAC系统可以比使用R134a的AAC系统更具竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental performance evaluation of an R1234yf automobile air conditioning system employing an internal heat exchanger
A bench-top automobile air conditioning (AAC) system using a thermostatic expansion valve was developed. The system was equipped with a coaxial internal heat exchanger (HEX) and charged with R1234yf, a new refrigerant used as an alternative to R134a. The system was tested at the compressor speeds ranging between 1000 rpm and 2600 rpm with increments of 400 rpm. For each compressor speed, the air temperatures at the evaporator and condenser inlets were concurrently changed between 30 °C and 40 °C with increments of 5 °C. The system was operated for the cases of employing and not employing the HEX, and totally 30 test runs were performed. Then, the first law of thermodynamics was applied to the system components to evaluate various steady state performance parameters. The considered parameters were the refrigerant mass flow rate, evaporating temperature, cooling capacity, compressor power, coefficient of performance (COP), condenser heat dissipation rate and discharge temperature of the compressor. It was determined that the experimental system employing the HEX yielded on average 0.8 °C lower evaporating temperature, 2.2% higher cooling capacity, 2.0% lower compressor power and 3.0% higher COP values relative to the system not employing the HEX. These findings reveal that the use of HEX causes a better system performance in terms of the cooling capacity, compressor power and COP. Consequently, the performance of R1234yf AAC systems can be improved with the use of HEX, and thus, the AAC systems using R1234yf can be more competitive with those using R134a.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信