D. Dhulashia, N. Peters, C. Horne, P. Beasley, M. Ritchie
{"title":"基于多频雷达微多普勒的微型无人机载荷重量分类","authors":"D. Dhulashia, N. Peters, C. Horne, P. Beasley, M. Ritchie","doi":"10.3389/frsip.2021.781777","DOIUrl":null,"url":null,"abstract":"The use of drones for recreational, commercial and military purposes has seen a rapid increase in recent years. The ability of counter-drone detection systems to sense whether a drone is carrying a payload is of strategic importance as this can help determine the potential threat level posed by a detected drone. This paper presents the use of micro-Doppler signatures collected using radar systems operating at three different frequency bands for the classification of carried payload of two different micro-drones performing two different motions. Use of a KNN classifier with six features extracted from micro-Doppler signatures enabled mean payload classification accuracies of 80.95, 72.50 and 86.05%, for data collected at S-band, C-band and W-band, respectively, when the drone type and motion type are unknown. The impact on classification performance of different amounts of situational information is also evaluated in this paper.","PeriodicalId":93557,"journal":{"name":"Frontiers in signal processing","volume":"3 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Multi-Frequency Radar Micro-Doppler Based Classification of Micro-Drone Payload Weight\",\"authors\":\"D. Dhulashia, N. Peters, C. Horne, P. Beasley, M. Ritchie\",\"doi\":\"10.3389/frsip.2021.781777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of drones for recreational, commercial and military purposes has seen a rapid increase in recent years. The ability of counter-drone detection systems to sense whether a drone is carrying a payload is of strategic importance as this can help determine the potential threat level posed by a detected drone. This paper presents the use of micro-Doppler signatures collected using radar systems operating at three different frequency bands for the classification of carried payload of two different micro-drones performing two different motions. Use of a KNN classifier with six features extracted from micro-Doppler signatures enabled mean payload classification accuracies of 80.95, 72.50 and 86.05%, for data collected at S-band, C-band and W-band, respectively, when the drone type and motion type are unknown. The impact on classification performance of different amounts of situational information is also evaluated in this paper.\",\"PeriodicalId\":93557,\"journal\":{\"name\":\"Frontiers in signal processing\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in signal processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frsip.2021.781777\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in signal processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frsip.2021.781777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Multi-Frequency Radar Micro-Doppler Based Classification of Micro-Drone Payload Weight
The use of drones for recreational, commercial and military purposes has seen a rapid increase in recent years. The ability of counter-drone detection systems to sense whether a drone is carrying a payload is of strategic importance as this can help determine the potential threat level posed by a detected drone. This paper presents the use of micro-Doppler signatures collected using radar systems operating at three different frequency bands for the classification of carried payload of two different micro-drones performing two different motions. Use of a KNN classifier with six features extracted from micro-Doppler signatures enabled mean payload classification accuracies of 80.95, 72.50 and 86.05%, for data collected at S-band, C-band and W-band, respectively, when the drone type and motion type are unknown. The impact on classification performance of different amounts of situational information is also evaluated in this paper.