某些五对角矩阵的行列式

Pub Date : 2021-12-23 DOI:10.3336/gm.56.2.05
L. Losonczi
{"title":"某些五对角矩阵的行列式","authors":"L. Losonczi","doi":"10.3336/gm.56.2.05","DOIUrl":null,"url":null,"abstract":"In this paper we consider pentadiagonal \\((n+1)\\times(n+1)\\) matrices with two subdiagonals and two superdiagonals at distances \\(k\\) and \\(2k\\) from the main diagonal where \\(1\\le k \\lt 2k\\le n\\). We give an explicit formula for their determinants and also consider the Toeplitz and “imperfect” Toeplitz versions of such matrices. Imperfectness means that the first and last \\(k\\) elements of the main diagonal differ from the elements in the middle. Using the rearrangement due to Egerváry and Szász we also show how these determinants can be factorized.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determinants of some pentadiagonal matrices\",\"authors\":\"L. Losonczi\",\"doi\":\"10.3336/gm.56.2.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider pentadiagonal \\\\((n+1)\\\\times(n+1)\\\\) matrices with two subdiagonals and two superdiagonals at distances \\\\(k\\\\) and \\\\(2k\\\\) from the main diagonal where \\\\(1\\\\le k \\\\lt 2k\\\\le n\\\\). We give an explicit formula for their determinants and also consider the Toeplitz and “imperfect” Toeplitz versions of such matrices. Imperfectness means that the first and last \\\\(k\\\\) elements of the main diagonal differ from the elements in the middle. Using the rearrangement due to Egerváry and Szász we also show how these determinants can be factorized.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3336/gm.56.2.05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3336/gm.56.2.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑五对角线\((n+1)\times(n+1)\)矩阵,在距离主对角线\(k\)和\(2k\)处有两个次对角线和两个超对角线,其中\(1\le k \lt 2k\le n\)。我们给出了它们的行列式的显式公式,并考虑了这种矩阵的Toeplitz和“不完全”Toeplitz版本。不完美意味着主对角线的第一个和最后一个\(k\)元素与中间的元素不同。利用Egerváry和Szász的重排,我们还展示了这些决定因素是如何被分解的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Determinants of some pentadiagonal matrices
In this paper we consider pentadiagonal \((n+1)\times(n+1)\) matrices with two subdiagonals and two superdiagonals at distances \(k\) and \(2k\) from the main diagonal where \(1\le k \lt 2k\le n\). We give an explicit formula for their determinants and also consider the Toeplitz and “imperfect” Toeplitz versions of such matrices. Imperfectness means that the first and last \(k\) elements of the main diagonal differ from the elements in the middle. Using the rearrangement due to Egerváry and Szász we also show how these determinants can be factorized.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信