基于策略q函数正则化的离线强化学习

Laixi Shi, Robert Dadashi, Yuejie Chi, P. S. Castro, M. Geist
{"title":"基于策略q函数正则化的离线强化学习","authors":"Laixi Shi, Robert Dadashi, Yuejie Chi, P. S. Castro, M. Geist","doi":"10.48550/arXiv.2307.13824","DOIUrl":null,"url":null,"abstract":"The core challenge of offline reinforcement learning (RL) is dealing with the (potentially catastrophic) extrapolation error induced by the distribution shift between the history dataset and the desired policy. A large portion of prior work tackles this challenge by implicitly/explicitly regularizing the learning policy towards the behavior policy, which is hard to estimate reliably in practice. In this work, we propose to regularize towards the Q-function of the behavior policy instead of the behavior policy itself, under the premise that the Q-function can be estimated more reliably and easily by a SARSA-style estimate and handles the extrapolation error more straightforwardly. We propose two algorithms taking advantage of the estimated Q-function through regularizations, and demonstrate they exhibit strong performance on the D4RL benchmarks.","PeriodicalId":74091,"journal":{"name":"Machine learning and knowledge discovery in databases : European Conference, ECML PKDD ... : proceedings. ECML PKDD (Conference)","volume":"77 1","pages":"455-471"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Offline Reinforcement Learning with On-Policy Q-Function Regularization\",\"authors\":\"Laixi Shi, Robert Dadashi, Yuejie Chi, P. S. Castro, M. Geist\",\"doi\":\"10.48550/arXiv.2307.13824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The core challenge of offline reinforcement learning (RL) is dealing with the (potentially catastrophic) extrapolation error induced by the distribution shift between the history dataset and the desired policy. A large portion of prior work tackles this challenge by implicitly/explicitly regularizing the learning policy towards the behavior policy, which is hard to estimate reliably in practice. In this work, we propose to regularize towards the Q-function of the behavior policy instead of the behavior policy itself, under the premise that the Q-function can be estimated more reliably and easily by a SARSA-style estimate and handles the extrapolation error more straightforwardly. We propose two algorithms taking advantage of the estimated Q-function through regularizations, and demonstrate they exhibit strong performance on the D4RL benchmarks.\",\"PeriodicalId\":74091,\"journal\":{\"name\":\"Machine learning and knowledge discovery in databases : European Conference, ECML PKDD ... : proceedings. ECML PKDD (Conference)\",\"volume\":\"77 1\",\"pages\":\"455-471\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine learning and knowledge discovery in databases : European Conference, ECML PKDD ... : proceedings. ECML PKDD (Conference)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2307.13824\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning and knowledge discovery in databases : European Conference, ECML PKDD ... : proceedings. ECML PKDD (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2307.13824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

离线强化学习(RL)的核心挑战是处理由历史数据集和期望策略之间的分布变化引起的(潜在的灾难性)外推误差。先前的大部分工作通过隐式/显式地将学习策略规范化到行为策略来解决这一挑战,这在实践中很难可靠地估计。在这项工作中,我们提出对行为策略的q函数而不是行为策略本身进行正则化,前提是q函数可以通过sarsa式估计更可靠和容易地估计,并且更直接地处理外推误差。我们通过正则化提出了两种利用估计q函数的算法,并证明它们在D4RL基准测试中表现出强大的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Offline Reinforcement Learning with On-Policy Q-Function Regularization
The core challenge of offline reinforcement learning (RL) is dealing with the (potentially catastrophic) extrapolation error induced by the distribution shift between the history dataset and the desired policy. A large portion of prior work tackles this challenge by implicitly/explicitly regularizing the learning policy towards the behavior policy, which is hard to estimate reliably in practice. In this work, we propose to regularize towards the Q-function of the behavior policy instead of the behavior policy itself, under the premise that the Q-function can be estimated more reliably and easily by a SARSA-style estimate and handles the extrapolation error more straightforwardly. We propose two algorithms taking advantage of the estimated Q-function through regularizations, and demonstrate they exhibit strong performance on the D4RL benchmarks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信