{"title":"用于缺陷预测的语义特征自动学习","authors":"Song Wang, Taiyue Liu, Lin Tan","doi":"10.1145/2884781.2884804","DOIUrl":null,"url":null,"abstract":"Software defect prediction, which predicts defective code regions, can help developers find bugs and prioritize their testing efforts. To build accurate prediction models, previous studies focus on manually designing features that encode the characteristics of programs and exploring different machine learning algorithms. Existing traditional features often fail to capture the semantic differences of programs, and such a capability is needed for building accurate prediction models. To bridge the gap between programs' semantics and defect prediction features, this paper proposes to leverage a powerful representation-learning algorithm, deep learning, to learn semantic representation of programs automatically from source code. Specifically, we leverage Deep Belief Network (DBN) to automatically learn semantic features from token vectors extracted from programs' Abstract Syntax Trees (ASTs). Our evaluation on ten open source projects shows that our automatically learned semantic features significantly improve both within-project defect prediction (WPDP) and cross-project defect prediction (CPDP) compared to traditional features. Our semantic features improve WPDP on average by 14.7% in precision, 11.5% in recall, and 14.2% in F1. For CPDP, our semantic features based approach outperforms the state-of-the-art technique TCA+ with traditional features by 8.9% in F1.","PeriodicalId":6485,"journal":{"name":"2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE)","volume":"11 1","pages":"297-308"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"537","resultStr":"{\"title\":\"Automatically Learning Semantic Features for Defect Prediction\",\"authors\":\"Song Wang, Taiyue Liu, Lin Tan\",\"doi\":\"10.1145/2884781.2884804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software defect prediction, which predicts defective code regions, can help developers find bugs and prioritize their testing efforts. To build accurate prediction models, previous studies focus on manually designing features that encode the characteristics of programs and exploring different machine learning algorithms. Existing traditional features often fail to capture the semantic differences of programs, and such a capability is needed for building accurate prediction models. To bridge the gap between programs' semantics and defect prediction features, this paper proposes to leverage a powerful representation-learning algorithm, deep learning, to learn semantic representation of programs automatically from source code. Specifically, we leverage Deep Belief Network (DBN) to automatically learn semantic features from token vectors extracted from programs' Abstract Syntax Trees (ASTs). Our evaluation on ten open source projects shows that our automatically learned semantic features significantly improve both within-project defect prediction (WPDP) and cross-project defect prediction (CPDP) compared to traditional features. Our semantic features improve WPDP on average by 14.7% in precision, 11.5% in recall, and 14.2% in F1. For CPDP, our semantic features based approach outperforms the state-of-the-art technique TCA+ with traditional features by 8.9% in F1.\",\"PeriodicalId\":6485,\"journal\":{\"name\":\"2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE)\",\"volume\":\"11 1\",\"pages\":\"297-308\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"537\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2884781.2884804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2884781.2884804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatically Learning Semantic Features for Defect Prediction
Software defect prediction, which predicts defective code regions, can help developers find bugs and prioritize their testing efforts. To build accurate prediction models, previous studies focus on manually designing features that encode the characteristics of programs and exploring different machine learning algorithms. Existing traditional features often fail to capture the semantic differences of programs, and such a capability is needed for building accurate prediction models. To bridge the gap between programs' semantics and defect prediction features, this paper proposes to leverage a powerful representation-learning algorithm, deep learning, to learn semantic representation of programs automatically from source code. Specifically, we leverage Deep Belief Network (DBN) to automatically learn semantic features from token vectors extracted from programs' Abstract Syntax Trees (ASTs). Our evaluation on ten open source projects shows that our automatically learned semantic features significantly improve both within-project defect prediction (WPDP) and cross-project defect prediction (CPDP) compared to traditional features. Our semantic features improve WPDP on average by 14.7% in precision, 11.5% in recall, and 14.2% in F1. For CPDP, our semantic features based approach outperforms the state-of-the-art technique TCA+ with traditional features by 8.9% in F1.