{"title":"平衡和不平衡设计以及有序和无序处理的正交对比","authors":"J. Rayner, G. Livingston","doi":"10.1111/stan.12305","DOIUrl":null,"url":null,"abstract":"We consider designs with t treatments, the ith level of which has ni observations. Four cases are examined: treatment levels both ordered and not, and the design balanced, with all ni equal, and not. A general construction is given that takes observations, typically treatment sums or treatment rank sums, constructs a simple quadratic form and expresses it as a sum of squares of orthogonal contrasts. For the case of ordered treatment levels, the Kruskal–Wallis, Friedman and Durbin tests are recovered by this construction. A dataset where the design is the supplemented balanced, which is an unbalanced design in our terminology, is analyzed. When treatment levels are not ordered the construction also applies. We then focus on Helmert contrasts.","PeriodicalId":51178,"journal":{"name":"Statistica Neerlandica","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Orthogonal Contrasts for both Balanced and Unbalanced Designs and both Ordered and Unordered Treatments\",\"authors\":\"J. Rayner, G. Livingston\",\"doi\":\"10.1111/stan.12305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider designs with t treatments, the ith level of which has ni observations. Four cases are examined: treatment levels both ordered and not, and the design balanced, with all ni equal, and not. A general construction is given that takes observations, typically treatment sums or treatment rank sums, constructs a simple quadratic form and expresses it as a sum of squares of orthogonal contrasts. For the case of ordered treatment levels, the Kruskal–Wallis, Friedman and Durbin tests are recovered by this construction. A dataset where the design is the supplemented balanced, which is an unbalanced design in our terminology, is analyzed. When treatment levels are not ordered the construction also applies. We then focus on Helmert contrasts.\",\"PeriodicalId\":51178,\"journal\":{\"name\":\"Statistica Neerlandica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistica Neerlandica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1111/stan.12305\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Neerlandica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/stan.12305","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Orthogonal Contrasts for both Balanced and Unbalanced Designs and both Ordered and Unordered Treatments
We consider designs with t treatments, the ith level of which has ni observations. Four cases are examined: treatment levels both ordered and not, and the design balanced, with all ni equal, and not. A general construction is given that takes observations, typically treatment sums or treatment rank sums, constructs a simple quadratic form and expresses it as a sum of squares of orthogonal contrasts. For the case of ordered treatment levels, the Kruskal–Wallis, Friedman and Durbin tests are recovered by this construction. A dataset where the design is the supplemented balanced, which is an unbalanced design in our terminology, is analyzed. When treatment levels are not ordered the construction also applies. We then focus on Helmert contrasts.
期刊介绍:
Statistica Neerlandica has been the journal of the Netherlands Society for Statistics and Operations Research since 1946. It covers all areas of statistics, from theoretical to applied, with a special emphasis on mathematical statistics, statistics for the behavioural sciences and biostatistics. This wide scope is reflected by the expertise of the journal’s editors representing these areas. The diverse editorial board is committed to a fast and fair reviewing process, and will judge submissions on quality, correctness, relevance and originality. Statistica Neerlandica encourages transparency and reproducibility, and offers online resources to make data, code, simulation results and other additional materials publicly available.