亥姆霍兹方程的无污染超弱FOSLS离散化

Harald Monsuur, R. Stevenson
{"title":"亥姆霍兹方程的无污染超弱FOSLS离散化","authors":"Harald Monsuur, R. Stevenson","doi":"10.48550/arXiv.2303.16508","DOIUrl":null,"url":null,"abstract":"We consider an ultra-weak first order system discretization of the Helmholtz equation. When employing the optimal test norm, the `ideal' method yields the best approximation to the pair of the Helmholtz solution and its scaled gradient w.r.t.~the norm on $L_2(\\Omega)\\times L_2(\\Omega)^d$ from the selected finite element trial space. On convex polygons, the `practical', implementable method is shown to be pollution-free essentially whenever the order $\\tilde{p}$ of the finite element test space grows proportionally with $\\max(\\log \\kappa,p^2)$, with $p$ being the order at trial side. Numerical results also on other domains show a much better accuracy than for the Galerkin method.","PeriodicalId":10572,"journal":{"name":"Comput. Math. Appl.","volume":"6 1","pages":"241-255"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A pollution-free ultra-weak FOSLS discretization of the Helmholtz equation\",\"authors\":\"Harald Monsuur, R. Stevenson\",\"doi\":\"10.48550/arXiv.2303.16508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider an ultra-weak first order system discretization of the Helmholtz equation. When employing the optimal test norm, the `ideal' method yields the best approximation to the pair of the Helmholtz solution and its scaled gradient w.r.t.~the norm on $L_2(\\\\Omega)\\\\times L_2(\\\\Omega)^d$ from the selected finite element trial space. On convex polygons, the `practical', implementable method is shown to be pollution-free essentially whenever the order $\\\\tilde{p}$ of the finite element test space grows proportionally with $\\\\max(\\\\log \\\\kappa,p^2)$, with $p$ being the order at trial side. Numerical results also on other domains show a much better accuracy than for the Galerkin method.\",\"PeriodicalId\":10572,\"journal\":{\"name\":\"Comput. Math. Appl.\",\"volume\":\"6 1\",\"pages\":\"241-255\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comput. Math. Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2303.16508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Math. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2303.16508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

考虑亥姆霍兹方程的超弱一阶系统离散化。当采用最优测试范数时,“理想”方法产生对亥姆霍兹解及其缩放梯度对的最佳近似值 $L_2(\Omega)\times L_2(\Omega)^d$ 从选定的有限元试验空间。在凸多边形上,“实用的”、可实现的方法被证明基本上是无公害的 $\tilde{p}$ 有限元的试验空间与之成正比增长 $\max(\log \kappa,p^2)$, with $p$ 作为审判方的命令。数值结果也表明,该方法在其他区域的精度比伽辽金方法高得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A pollution-free ultra-weak FOSLS discretization of the Helmholtz equation
We consider an ultra-weak first order system discretization of the Helmholtz equation. When employing the optimal test norm, the `ideal' method yields the best approximation to the pair of the Helmholtz solution and its scaled gradient w.r.t.~the norm on $L_2(\Omega)\times L_2(\Omega)^d$ from the selected finite element trial space. On convex polygons, the `practical', implementable method is shown to be pollution-free essentially whenever the order $\tilde{p}$ of the finite element test space grows proportionally with $\max(\log \kappa,p^2)$, with $p$ being the order at trial side. Numerical results also on other domains show a much better accuracy than for the Galerkin method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信