基于伪谱配置法的burgers方程的降阶建模数值解

IF 0.3 Q4 MATHEMATICS, APPLIED
Jeong-Kweon Seo, B. Shin
{"title":"基于伪谱配置法的burgers方程的降阶建模数值解","authors":"Jeong-Kweon Seo, B. Shin","doi":"10.12941/JKSIAM.2015.19.123","DOIUrl":null,"url":null,"abstract":"In this paper, a reduced-order modeling(ROM) of Burgers equations is studied based on pseudo-spectral collocation method. A ROM basis is obtained by the proper orthogonal decomposition(POD). Crank-Nicolson scheme is applied in time discretization and the pseudo-spectral element collocation method is adopted to solve linearlized equation based on the Newton method in spatial discretization. We deliver POD-based algorithm and present some numerical experiments to show the efficiency of our proposed method.","PeriodicalId":41717,"journal":{"name":"Journal of the Korean Society for Industrial and Applied Mathematics","volume":"19 1","pages":"123-135"},"PeriodicalIF":0.3000,"publicationDate":"2015-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"NUMERICAL SOLUTIONS OF BURGERS EQUATION BY REDUCED-ORDER MODELING BASED ON PSEUDO-SPECTRAL COLLOCATION METHOD\",\"authors\":\"Jeong-Kweon Seo, B. Shin\",\"doi\":\"10.12941/JKSIAM.2015.19.123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a reduced-order modeling(ROM) of Burgers equations is studied based on pseudo-spectral collocation method. A ROM basis is obtained by the proper orthogonal decomposition(POD). Crank-Nicolson scheme is applied in time discretization and the pseudo-spectral element collocation method is adopted to solve linearlized equation based on the Newton method in spatial discretization. We deliver POD-based algorithm and present some numerical experiments to show the efficiency of our proposed method.\",\"PeriodicalId\":41717,\"journal\":{\"name\":\"Journal of the Korean Society for Industrial and Applied Mathematics\",\"volume\":\"19 1\",\"pages\":\"123-135\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2015-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Society for Industrial and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12941/JKSIAM.2015.19.123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Society for Industrial and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12941/JKSIAM.2015.19.123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 5

摘要

本文研究了基于伪谱配置法的Burgers方程降阶建模方法。通过适当的正交分解(POD)得到ROM基。在时间离散化中采用Crank-Nicolson格式,在空间离散化中基于牛顿法采用伪谱元配置法求解线性化方程。我们给出了基于pod的算法,并给出了一些数值实验来证明我们提出的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NUMERICAL SOLUTIONS OF BURGERS EQUATION BY REDUCED-ORDER MODELING BASED ON PSEUDO-SPECTRAL COLLOCATION METHOD
In this paper, a reduced-order modeling(ROM) of Burgers equations is studied based on pseudo-spectral collocation method. A ROM basis is obtained by the proper orthogonal decomposition(POD). Crank-Nicolson scheme is applied in time discretization and the pseudo-spectral element collocation method is adopted to solve linearlized equation based on the Newton method in spatial discretization. We deliver POD-based algorithm and present some numerical experiments to show the efficiency of our proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信