Jérôme Lehaire, Rémi Flamary, O. Rouvière, C. Lartizien
{"title":"结合学习字典与监督分类的前列腺癌检测与表征计算机辅助诊断系统","authors":"Jérôme Lehaire, Rémi Flamary, O. Rouvière, C. Lartizien","doi":"10.1109/ICIP.2014.7025456","DOIUrl":null,"url":null,"abstract":"This paper aims at presenting results of a computer-aided diagnostic (CAD) system for voxel based detection and characterization of prostate cancer in the peripheral zone based on multiparametric magnetic resonance (mp-MR) imaging. We propose an original scheme with the combination of a feature extraction step based on a sparse dictionary learning (DL) method and a supervised classification in order to discriminate normal {N}, normal but suspect {NS} tissues as well as different classes of cancer tissue whose aggressiveness is characterized by the Gleason score ranging from 6 {GL6} to 9 {GL9}. We compare the classification performance of two supervised methods, the linear support vector machine (SVM) and the logistic regression (LR) classifiers in a binary classification task. Classification performances were evaluated over an mp-MR image database of 35 patients where each voxel was labeled, based on a ground truth, by an expert radiologist. Results show that the proposed method in addition to being explicable thanks to the sparse representation of the voxels compares well (AUC>0.8) with recent state-of-the-art performances. Preliminary visual analysis of example patient cancer probability maps indicate that cancer probabilities tend to increase as a function of the Gleason score.","PeriodicalId":6856,"journal":{"name":"2014 IEEE International Conference on Image Processing (ICIP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Computer-aided diagnostic system for prostate cancer detection and characterization combining learned dictionaries and supervised classification\",\"authors\":\"Jérôme Lehaire, Rémi Flamary, O. Rouvière, C. Lartizien\",\"doi\":\"10.1109/ICIP.2014.7025456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims at presenting results of a computer-aided diagnostic (CAD) system for voxel based detection and characterization of prostate cancer in the peripheral zone based on multiparametric magnetic resonance (mp-MR) imaging. We propose an original scheme with the combination of a feature extraction step based on a sparse dictionary learning (DL) method and a supervised classification in order to discriminate normal {N}, normal but suspect {NS} tissues as well as different classes of cancer tissue whose aggressiveness is characterized by the Gleason score ranging from 6 {GL6} to 9 {GL9}. We compare the classification performance of two supervised methods, the linear support vector machine (SVM) and the logistic regression (LR) classifiers in a binary classification task. Classification performances were evaluated over an mp-MR image database of 35 patients where each voxel was labeled, based on a ground truth, by an expert radiologist. Results show that the proposed method in addition to being explicable thanks to the sparse representation of the voxels compares well (AUC>0.8) with recent state-of-the-art performances. Preliminary visual analysis of example patient cancer probability maps indicate that cancer probabilities tend to increase as a function of the Gleason score.\",\"PeriodicalId\":6856,\"journal\":{\"name\":\"2014 IEEE International Conference on Image Processing (ICIP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2014.7025456\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2014.7025456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Computer-aided diagnostic system for prostate cancer detection and characterization combining learned dictionaries and supervised classification
This paper aims at presenting results of a computer-aided diagnostic (CAD) system for voxel based detection and characterization of prostate cancer in the peripheral zone based on multiparametric magnetic resonance (mp-MR) imaging. We propose an original scheme with the combination of a feature extraction step based on a sparse dictionary learning (DL) method and a supervised classification in order to discriminate normal {N}, normal but suspect {NS} tissues as well as different classes of cancer tissue whose aggressiveness is characterized by the Gleason score ranging from 6 {GL6} to 9 {GL9}. We compare the classification performance of two supervised methods, the linear support vector machine (SVM) and the logistic regression (LR) classifiers in a binary classification task. Classification performances were evaluated over an mp-MR image database of 35 patients where each voxel was labeled, based on a ground truth, by an expert radiologist. Results show that the proposed method in addition to being explicable thanks to the sparse representation of the voxels compares well (AUC>0.8) with recent state-of-the-art performances. Preliminary visual analysis of example patient cancer probability maps indicate that cancer probabilities tend to increase as a function of the Gleason score.