结合学习字典与监督分类的前列腺癌检测与表征计算机辅助诊断系统

Jérôme Lehaire, Rémi Flamary, O. Rouvière, C. Lartizien
{"title":"结合学习字典与监督分类的前列腺癌检测与表征计算机辅助诊断系统","authors":"Jérôme Lehaire, Rémi Flamary, O. Rouvière, C. Lartizien","doi":"10.1109/ICIP.2014.7025456","DOIUrl":null,"url":null,"abstract":"This paper aims at presenting results of a computer-aided diagnostic (CAD) system for voxel based detection and characterization of prostate cancer in the peripheral zone based on multiparametric magnetic resonance (mp-MR) imaging. We propose an original scheme with the combination of a feature extraction step based on a sparse dictionary learning (DL) method and a supervised classification in order to discriminate normal {N}, normal but suspect {NS} tissues as well as different classes of cancer tissue whose aggressiveness is characterized by the Gleason score ranging from 6 {GL6} to 9 {GL9}. We compare the classification performance of two supervised methods, the linear support vector machine (SVM) and the logistic regression (LR) classifiers in a binary classification task. Classification performances were evaluated over an mp-MR image database of 35 patients where each voxel was labeled, based on a ground truth, by an expert radiologist. Results show that the proposed method in addition to being explicable thanks to the sparse representation of the voxels compares well (AUC>0.8) with recent state-of-the-art performances. Preliminary visual analysis of example patient cancer probability maps indicate that cancer probabilities tend to increase as a function of the Gleason score.","PeriodicalId":6856,"journal":{"name":"2014 IEEE International Conference on Image Processing (ICIP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Computer-aided diagnostic system for prostate cancer detection and characterization combining learned dictionaries and supervised classification\",\"authors\":\"Jérôme Lehaire, Rémi Flamary, O. Rouvière, C. Lartizien\",\"doi\":\"10.1109/ICIP.2014.7025456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims at presenting results of a computer-aided diagnostic (CAD) system for voxel based detection and characterization of prostate cancer in the peripheral zone based on multiparametric magnetic resonance (mp-MR) imaging. We propose an original scheme with the combination of a feature extraction step based on a sparse dictionary learning (DL) method and a supervised classification in order to discriminate normal {N}, normal but suspect {NS} tissues as well as different classes of cancer tissue whose aggressiveness is characterized by the Gleason score ranging from 6 {GL6} to 9 {GL9}. We compare the classification performance of two supervised methods, the linear support vector machine (SVM) and the logistic regression (LR) classifiers in a binary classification task. Classification performances were evaluated over an mp-MR image database of 35 patients where each voxel was labeled, based on a ground truth, by an expert radiologist. Results show that the proposed method in addition to being explicable thanks to the sparse representation of the voxels compares well (AUC>0.8) with recent state-of-the-art performances. Preliminary visual analysis of example patient cancer probability maps indicate that cancer probabilities tend to increase as a function of the Gleason score.\",\"PeriodicalId\":6856,\"journal\":{\"name\":\"2014 IEEE International Conference on Image Processing (ICIP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2014.7025456\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2014.7025456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文旨在介绍基于多参数磁共振(mp-MR)成像的基于体素的前列腺癌外周区检测和表征的计算机辅助诊断(CAD)系统的结果。我们提出了一种基于稀疏字典学习(DL)方法的特征提取步骤和监督分类相结合的原始方案,以区分正常{N},正常但可疑的{NS}组织以及不同类别的癌组织,其侵袭性的Gleason评分范围为6 {GL6}到9 {GL9}。我们比较了线性支持向量机(SVM)和逻辑回归(LR)两种监督方法在二元分类任务中的分类性能。分类性能在35名患者的mp-MR图像数据库上进行评估,其中每个体素都由放射科专家根据基本事实进行标记。结果表明,除了由于体素的稀疏表示而易于解释外,所提出的方法与最近最先进的性能相比(AUC>0.8)。对示例患者癌症概率图的初步可视化分析表明,随着Gleason评分的增加,癌症概率趋于增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computer-aided diagnostic system for prostate cancer detection and characterization combining learned dictionaries and supervised classification
This paper aims at presenting results of a computer-aided diagnostic (CAD) system for voxel based detection and characterization of prostate cancer in the peripheral zone based on multiparametric magnetic resonance (mp-MR) imaging. We propose an original scheme with the combination of a feature extraction step based on a sparse dictionary learning (DL) method and a supervised classification in order to discriminate normal {N}, normal but suspect {NS} tissues as well as different classes of cancer tissue whose aggressiveness is characterized by the Gleason score ranging from 6 {GL6} to 9 {GL9}. We compare the classification performance of two supervised methods, the linear support vector machine (SVM) and the logistic regression (LR) classifiers in a binary classification task. Classification performances were evaluated over an mp-MR image database of 35 patients where each voxel was labeled, based on a ground truth, by an expert radiologist. Results show that the proposed method in addition to being explicable thanks to the sparse representation of the voxels compares well (AUC>0.8) with recent state-of-the-art performances. Preliminary visual analysis of example patient cancer probability maps indicate that cancer probabilities tend to increase as a function of the Gleason score.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信