{"title":"纠缠,因果关系和量子网络","authors":"E. Polino, F. Sciarrino","doi":"10.1051/epn/2023105","DOIUrl":null,"url":null,"abstract":"Quantum nonlocality, generated by strong correlations between entangled systems, defies the classical view of nature based on standard causal reasoning plus physical assumptions. The new frontier of the research on entanglement is to explore quantum correlations in complex networks, involving several parties and generating new striking quantum effects. We present recent advances on the realization of photonic quantum networks.","PeriodicalId":52467,"journal":{"name":"Europhysics News","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entanglement, causality and quantum networks\",\"authors\":\"E. Polino, F. Sciarrino\",\"doi\":\"10.1051/epn/2023105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum nonlocality, generated by strong correlations between entangled systems, defies the classical view of nature based on standard causal reasoning plus physical assumptions. The new frontier of the research on entanglement is to explore quantum correlations in complex networks, involving several parties and generating new striking quantum effects. We present recent advances on the realization of photonic quantum networks.\",\"PeriodicalId\":52467,\"journal\":{\"name\":\"Europhysics News\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Europhysics News\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/epn/2023105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Europhysics News","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/epn/2023105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Quantum nonlocality, generated by strong correlations between entangled systems, defies the classical view of nature based on standard causal reasoning plus physical assumptions. The new frontier of the research on entanglement is to explore quantum correlations in complex networks, involving several parties and generating new striking quantum effects. We present recent advances on the realization of photonic quantum networks.
Europhysics NewsPhysics and Astronomy-Physics and Astronomy (all)
CiteScore
0.50
自引率
0.00%
发文量
22
期刊介绍:
Europhysics News is the magazine of the European physics community. It is owned by the European Physical Society and produced in cooperation with EDP Sciences. It is distributed to all our Individual Members and many institutional subscribers. Most European national societies receive EPN for further distribution. The total circulation is currently about 25000 copies per issue. It aims to provide physicists at all levels, ranging from post graduate students to senior managers working in both industry and the public sector, with a balanced overview of the scientific and organizational aspects of physics and related disciplines at a European level. Sections covered: ◦Activities ◦Features ◦News and views