{"title":"缺血性脑卒中患者中性粒细胞弹性酶动态平衡紊乱及其抑制系统","authors":"Mamatha Kunder, A. Kutty, V. Lakshmaiah","doi":"10.13005/bpj/2669","DOIUrl":null,"url":null,"abstract":"Neutrophils are the first to infiltrate ischemic brain regions causing the release of Neutrophil Elastase (NE), a pro-inflammatory proteinase. The activity of NE is well regulated by endogenous inhibitors alpha1-antitrypsin (α1-AT) and alpha2-macroglobulin (α2-MG). The physiological balance of elastase and anti-elastase factors is essential to maintain the normal integrity of tissues and an imbalance has been implicated in the pathogenesis of several acute and chronic inflammatory diseases. The present study was designed to determine the plasma levels of NE, α1-AT, α2-MG, and NE–α1-AT complex to evaluate their role in inflammatory processes of ischemic stroke. The effect of homocysteine on the release of elastase from neutrophils was also studied. The study involved a total of 100 subjects (controls =60 and patients=40). Significantly higher mean elastase activity and lower α1-AT levels were observed in ischemic stroke patients than in controls. NE- α1-AT complex and α2-MG levels were significantly increased in the patient group. The in vitro study indicated homocysteine induced release of elastase from neutrophils. In conclusion, homeostasis of NE and its endogenous inhibitors is deranged in patients suggestive of their role in the pathogenesis of ischemic stroke through exacerbating inflammatory and coagulation processes.","PeriodicalId":9054,"journal":{"name":"Biomedical and Pharmacology Journal","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Derangement in Homeostasis of Neutrophil Elastase and its Inhibitory Systems in Ischemic Stroke Patients\",\"authors\":\"Mamatha Kunder, A. Kutty, V. Lakshmaiah\",\"doi\":\"10.13005/bpj/2669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neutrophils are the first to infiltrate ischemic brain regions causing the release of Neutrophil Elastase (NE), a pro-inflammatory proteinase. The activity of NE is well regulated by endogenous inhibitors alpha1-antitrypsin (α1-AT) and alpha2-macroglobulin (α2-MG). The physiological balance of elastase and anti-elastase factors is essential to maintain the normal integrity of tissues and an imbalance has been implicated in the pathogenesis of several acute and chronic inflammatory diseases. The present study was designed to determine the plasma levels of NE, α1-AT, α2-MG, and NE–α1-AT complex to evaluate their role in inflammatory processes of ischemic stroke. The effect of homocysteine on the release of elastase from neutrophils was also studied. The study involved a total of 100 subjects (controls =60 and patients=40). Significantly higher mean elastase activity and lower α1-AT levels were observed in ischemic stroke patients than in controls. NE- α1-AT complex and α2-MG levels were significantly increased in the patient group. The in vitro study indicated homocysteine induced release of elastase from neutrophils. In conclusion, homeostasis of NE and its endogenous inhibitors is deranged in patients suggestive of their role in the pathogenesis of ischemic stroke through exacerbating inflammatory and coagulation processes.\",\"PeriodicalId\":9054,\"journal\":{\"name\":\"Biomedical and Pharmacology Journal\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical and Pharmacology Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13005/bpj/2669\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical and Pharmacology Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13005/bpj/2669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Derangement in Homeostasis of Neutrophil Elastase and its Inhibitory Systems in Ischemic Stroke Patients
Neutrophils are the first to infiltrate ischemic brain regions causing the release of Neutrophil Elastase (NE), a pro-inflammatory proteinase. The activity of NE is well regulated by endogenous inhibitors alpha1-antitrypsin (α1-AT) and alpha2-macroglobulin (α2-MG). The physiological balance of elastase and anti-elastase factors is essential to maintain the normal integrity of tissues and an imbalance has been implicated in the pathogenesis of several acute and chronic inflammatory diseases. The present study was designed to determine the plasma levels of NE, α1-AT, α2-MG, and NE–α1-AT complex to evaluate their role in inflammatory processes of ischemic stroke. The effect of homocysteine on the release of elastase from neutrophils was also studied. The study involved a total of 100 subjects (controls =60 and patients=40). Significantly higher mean elastase activity and lower α1-AT levels were observed in ischemic stroke patients than in controls. NE- α1-AT complex and α2-MG levels were significantly increased in the patient group. The in vitro study indicated homocysteine induced release of elastase from neutrophils. In conclusion, homeostasis of NE and its endogenous inhibitors is deranged in patients suggestive of their role in the pathogenesis of ischemic stroke through exacerbating inflammatory and coagulation processes.
期刊介绍:
Biomedical and Pharmacology Journal (BPJ) is an International Peer Reviewed Research Journal in English language whose frequency is quarterly. The journal seeks to promote research, exchange of scientific information, consideration of regulatory mechanisms that affect drug development and utilization, and medical education. BPJ take much care in making your article published without much delay with your kind cooperation and support. Research papers, review articles, short communications, news are welcomed provided they demonstrate new findings of relevance to the field as a whole. All articles will be peer-reviewed and will find a place in Biomedical and Pharmacology Journal based on the merit and innovativeness of the research work. BPJ hopes that Researchers, Research scholars, Academician, Industrialists etc. would make use of this journal for the development of science and technology. Topics of interest include, but are not limited to: Biochemistry Genetics Microbiology and virology Molecular, cellular and cancer biology Neurosciences Pharmacology Drug Discovery Cardiovascular Pharmacology Neuropharmacology Molecular & Cellular Mechanisms Immunology & Inflammation Pharmacy.