Yi-Min Tsai, Tien-Ju Yang, Chih-Chung Tsai, K. Huang, Liang-Gee Chen
{"title":"69mW 140米/60fps和60米/300fps智能视觉SoC,适用于多功能汽车应用","authors":"Yi-Min Tsai, Tien-Ju Yang, Chih-Chung Tsai, K. Huang, Liang-Gee Chen","doi":"10.1109/VLSIC.2012.6243835","DOIUrl":null,"url":null,"abstract":"A machine-learning based intelligent vision SoC implemented on a 9.3 mm2 die in a 40nm CMOS process is presented. The architecture realizes 140 meters active distance at 60fps and 60 meters at 300fps under Quad-VGA (1280×960) resolution while maintaining above 90% detection rate for versatile automotive applications. The system supports 64 object tracking and prediction. It raises 1.62× improvement on power efficiency and at least 1.79× increase on frame rate with the proposed knowledge-based tracking processor. The chip achieves 354.2fps/W and 3.01TOPS/W power efficiency with 69mW average power consumption.","PeriodicalId":6347,"journal":{"name":"2012 Symposium on VLSI Circuits (VLSIC)","volume":"05 1","pages":"152-153"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"A 69mW 140-meter/60fps and 60-meter/300fps intelligent vision SoC for versatile automotive applications\",\"authors\":\"Yi-Min Tsai, Tien-Ju Yang, Chih-Chung Tsai, K. Huang, Liang-Gee Chen\",\"doi\":\"10.1109/VLSIC.2012.6243835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A machine-learning based intelligent vision SoC implemented on a 9.3 mm2 die in a 40nm CMOS process is presented. The architecture realizes 140 meters active distance at 60fps and 60 meters at 300fps under Quad-VGA (1280×960) resolution while maintaining above 90% detection rate for versatile automotive applications. The system supports 64 object tracking and prediction. It raises 1.62× improvement on power efficiency and at least 1.79× increase on frame rate with the proposed knowledge-based tracking processor. The chip achieves 354.2fps/W and 3.01TOPS/W power efficiency with 69mW average power consumption.\",\"PeriodicalId\":6347,\"journal\":{\"name\":\"2012 Symposium on VLSI Circuits (VLSIC)\",\"volume\":\"05 1\",\"pages\":\"152-153\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Symposium on VLSI Circuits (VLSIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSIC.2012.6243835\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Symposium on VLSI Circuits (VLSIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIC.2012.6243835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 69mW 140-meter/60fps and 60-meter/300fps intelligent vision SoC for versatile automotive applications
A machine-learning based intelligent vision SoC implemented on a 9.3 mm2 die in a 40nm CMOS process is presented. The architecture realizes 140 meters active distance at 60fps and 60 meters at 300fps under Quad-VGA (1280×960) resolution while maintaining above 90% detection rate for versatile automotive applications. The system supports 64 object tracking and prediction. It raises 1.62× improvement on power efficiency and at least 1.79× increase on frame rate with the proposed knowledge-based tracking processor. The chip achieves 354.2fps/W and 3.01TOPS/W power efficiency with 69mW average power consumption.