数据驱动网络入侵检测研究进展

Dylan Chou, Meng Jiang
{"title":"数据驱动网络入侵检测研究进展","authors":"Dylan Chou, Meng Jiang","doi":"10.1145/3472753","DOIUrl":null,"url":null,"abstract":"Data-driven network intrusion detection (NID) has a tendency towards minority attack classes compared to normal traffic. Many datasets are collected in simulated environments rather than real-world networks. These challenges undermine the performance of intrusion detection machine learning models by fitting machine learning models to unrepresentative “sandbox” datasets. This survey presents a taxonomy with eight main challenges and explores common datasets from 1999 to 2020. Trends are analyzed on the challenges in the past decade and future directions are proposed on expanding NID into cloud-based environments, devising scalable models for large network data, and creating labeled datasets collected in real-world networks.","PeriodicalId":7000,"journal":{"name":"ACM Computing Surveys (CSUR)","volume":"45 1","pages":"1 - 36"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":"{\"title\":\"A Survey on Data-driven Network Intrusion Detection\",\"authors\":\"Dylan Chou, Meng Jiang\",\"doi\":\"10.1145/3472753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data-driven network intrusion detection (NID) has a tendency towards minority attack classes compared to normal traffic. Many datasets are collected in simulated environments rather than real-world networks. These challenges undermine the performance of intrusion detection machine learning models by fitting machine learning models to unrepresentative “sandbox” datasets. This survey presents a taxonomy with eight main challenges and explores common datasets from 1999 to 2020. Trends are analyzed on the challenges in the past decade and future directions are proposed on expanding NID into cloud-based environments, devising scalable models for large network data, and creating labeled datasets collected in real-world networks.\",\"PeriodicalId\":7000,\"journal\":{\"name\":\"ACM Computing Surveys (CSUR)\",\"volume\":\"45 1\",\"pages\":\"1 - 36\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Computing Surveys (CSUR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3472753\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys (CSUR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3472753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

摘要

与正常流量相比,数据驱动网络入侵检测(NID)具有少数攻击类的倾向。许多数据集是在模拟环境中收集的,而不是在现实世界的网络中。这些挑战通过将机器学习模型拟合到不具代表性的“沙盒”数据集,破坏了入侵检测机器学习模型的性能。本调查提出了一个分类法的八个主要挑战,并探讨了1999年至2020年的常用数据集。分析了过去十年的趋势和挑战,并提出了将NID扩展到基于云的环境,为大型网络数据设计可扩展模型以及创建在现实网络中收集的标记数据集的未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Survey on Data-driven Network Intrusion Detection
Data-driven network intrusion detection (NID) has a tendency towards minority attack classes compared to normal traffic. Many datasets are collected in simulated environments rather than real-world networks. These challenges undermine the performance of intrusion detection machine learning models by fitting machine learning models to unrepresentative “sandbox” datasets. This survey presents a taxonomy with eight main challenges and explores common datasets from 1999 to 2020. Trends are analyzed on the challenges in the past decade and future directions are proposed on expanding NID into cloud-based environments, devising scalable models for large network data, and creating labeled datasets collected in real-world networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信